Semi-automated bladder cancer screening using machine learning: clinical validation and implementation.
使用机器学习的半自动膀胱癌筛查:临床验证和实施。
基本信息
- 批准号:10349701
- 负责人:
- 金额:$ 23.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAgeAlgorithmsArsenicAtypiaAutomationAwardBeliefBenignCellsChemicalsClassificationClinicalClinical MedicineClinical ServicesCodeComputer softwareCourse ContentCustomCystoscopyCytologyCytopathologyDataData ScientistData SetDecision AidDemographic FactorsDepositionDevelopmentDiagnosisDiagnosticDisciplineDyesEducationElderlyElementsEnvironmentEvaluationFatigueFutureGlassGoldGrantHealth systemHematuriaHigh Performance ComputingHospitalsHumanHuman CharacteristicsImageInflammatoryInstitutionInterobserver VariabilityK-Series Research Career ProgramsLiquid substanceMachine LearningMalignant NeoplasmsMalignant neoplasm of urinary bladderManuscriptsMathematicsMentorsMethodsMicroscopeMicroscopicModelingModernizationMorphologyNeoplasmsNuclearOnline SystemsOutputPap smearParis, FrancePathologistPathologyPatientsPeriodicityPlayPreparationPrivatizationProcessRecurrenceReproducibilityResource-limited settingRiskRisk FactorsRunningRuralSamplingScreening for cancerServicesSlideSmokingSpecimenSquamous CellStainsStatutes and LawsSystemTechniquesTechnologyTestingTrainingTransitional Cell CarcinomaUrineUrothelial CellUrotheliumValidationWorkanalogbasecancer carecancer diagnosisclinical diagnosticscluster computingcollegecombatcomputer programdesigndiagnostic algorithmdiagnostic criteriadiagnostic platformdigitaldigital pathologyexperienceflexibilitygraphical user interfacehead-to-head comparisonhigh riskhuman errorimprovedinnovationmachine learning algorithmmachine learning modelprototyperisk stratificationroutine screeningscreeningskillsstatisticstheoriesvirtualweb appwhole slide imaging
项目摘要
Project Summary / Abstract:
Bladder cancer is the 7th most common malignancy worldwide and has the highest recurrence rate of any cancer
(70%).1–3 Patients with risk factors (smoking, arsenic / chemical dye exposure) and / or hematuria are routinely
screened for bladder cancer via analysis of voided urine. The cellular elements of the urine are deposited to
glass slides, stained, and examined by a cytopathologist for features of bladder cancer using the gold standard
Paris System for Urine Cytopathology.4 However, the Paris System is subjective and the morphology of urothelial
cells is highly varied, making the process difficult and prone to high interobserver variability and human errors
borne of fatigue and overwork.5,6 A more quantitative, automated method of assessing urine cytopathology for
bladder cancer is needed. Machine learning (ML) technologies have proven to be highly effective in image based
classification in pathology, in that ML models operate reproducibly and without bias (unless the training data is
biased) or fatigue. Pap smears are already routinely processed by a semi-automated ML system (BD
FocalPoint), and share many common features with urine cytology specimens in that both are cancer screening
tests relying on cellular and nuclear morphology and prepared by Liquid Based Preparation (LBP, e.g. ThinPrep)
methods. Yet to date no system has been developed to harness ML for bladder cancer in this way, a fact I intend
to change. While it is my strong belief that pathology as a discipline is poised to make the transition to a 100%
digital service, there is significant inertia to overcome to replace the current analog microscope technology. We
must go beyond simply providing a digital alternative by augmenting the skills of the pathologist with ML
algorithms that empower them to work more efficiently, quickly and safely. Urine cytology screening for bladder
cancer is an ideal use case. Thus we sought to create a prototype ML based algorithm, dubbed AutoParis, that
would automate the tabulation of the Paris System. The initial prototype of AutoParis proved to be highly
effective at risk stratifying urine cytology specimens by tabulating statistics related to nuclear to cytoplasmic ratio
(NC ratio, a very important indicator of neoplasia) and cellular / nuclear morphological atypia.7 Deploying
AutoParis as a diagnostic aid to the cytopathologist will require several additional steps. Although I was skilled
enough to code the first iteration of the model, I am reaching the limits of what I can accomplish as a self-taught
programmer and data scientist. In order to complete my work on AutoParis and continue to innovate in the field
of digital pathology and ML, I need a more formalized education in specialized mathematics, statistics, ML theory
and programming. Through this award I will pursue a curriculum of courses at Dartmouth College guided by a
team of expert mentors. My mentors and collaborators were also selected for their ability to help with the testing
and validation of digital decision aids, grant and manuscript prep and lab management. I will emerge from this
experience with the skills I need to be a leader in the future of ML development and its adoption in clinical
medicine.
项目概要/摘要:
膀胱癌是全球第七常见的恶性肿瘤,复发率是所有癌症中最高的
(70 1 -3例有危险因素(吸烟、砷/化学染料暴露)和/或血尿的患者,
通过分析尿液筛查膀胱癌。尿液中的细胞成分沉积在
玻璃载玻片,染色,并由细胞病理学家使用金标准检查膀胱癌的特征
巴黎系统用于尿液细胞病理学。4然而,巴黎系统是主观的,
细胞是高度变化的,这使得该过程变得困难,并且容易出现观察者之间的高度变异性和人为错误
一种更定量、自动化的评估尿细胞病理学的方法,
膀胱癌是必需的。机器学习(ML)技术已被证明在基于图像的
病理学分类,因为ML模型可重复运行且无偏差(除非训练数据是
有偏见)或疲劳。巴氏涂片已经常规处理的半自动ML系统(BD
FocalPoint),并与尿细胞学标本有许多共同特征,因为两者都是癌症筛查
依赖于细胞和核形态并通过液基制备(LBP,例如ThinPrep)制备的测试
方法.然而,到目前为止,还没有开发出一种系统来以这种方式利用ML治疗膀胱癌,这是我打算的一个事实。
改变虽然我坚信病理学作为一门学科,
数字服务,有很大的惯性克服,以取代目前的模拟显微镜技术。我们
必须超越简单地通过增强病理学家的ML技能来提供数字替代方案
这些算法使他们能够更高效、快速和安全地工作。膀胱尿细胞学筛查
癌症是一个理想的使用案例。因此,我们试图创建一个基于ML的原型算法,称为AutoParis,
将使巴黎系统的制表自动化。AutoParis的最初原型被证明是高度
通过对与细胞核/细胞质比率相关的统计数据制表对尿细胞学标本进行有效风险分层
(NC比率,肿瘤形成的一个非常重要的指标)和细胞/核形态学异常。
AutoParis作为细胞病理学家的诊断辅助工具需要几个额外的步骤。虽然我很熟练
足够的代码模型的第一次迭代,我达到了我可以完成的极限,作为一个自学成才的人。
程序员和数据科学家。为了完成我在AutoParis上的工作并继续在该领域进行创新
数字病理学和机器学习,我需要一个更正规的教育,在专业的数学,统计学,机器学习理论
和编程。通过这个奖项,我将继续在达特茅斯学院的课程,
专家导师团队。我的导师和合作者也因为他们帮助测试的能力而被选中
数字决策辅助工具的验证、资助和手稿准备以及实验室管理。我会从中脱颖而出
我需要成为未来ML开发及其在临床应用中的领导者的技能经验
药
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Louis Joseph Vaickus其他文献
Louis Joseph Vaickus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 23.71万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 23.71万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 23.71万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 23.71万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 23.71万 - 项目类别:
Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 23.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 23.71万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 23.71万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 23.71万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 23.71万 - 项目类别:
Research Grant