Non-destructive optical spectroscopic assay for high-throughput metabolic characterization of in vitro cell models and patient-derived organoids

用于体外细胞模型和患者来源类器官高通量代谢表征的无损光学光谱测定

基本信息

  • 批准号:
    10348268
  • 负责人:
  • 金额:
    $ 22.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Abstract To maximize cancer patients’ survival rate post-therapy, in vitro immortal cancer cell models and newly developed patient-derived organoids are widely used to study the role of tumor metabolism reprogramming in tumor growth and survival under therapeutics stresses. Although conducting longitudinal metabolic measurements on the same tumor sample during a course of therapy is critical for therapeutic studies, there are surprisingly few techniques that can provide a systems-level view of tumor metabolism on in vitro cancer models or organoids non-destructively. Several metabolic tools, such as Seahorse Assay and Metabolomics, provide standardized metabolic measurements but often require destructive sample preparation. Relying on the non-invasive nature of optical technique, this proposal seeks to fill the critical technical gap by developing an optical spectroscopic assay that will enable non-destructive high-throughput metabolism measurement on in vitro cancer models and organoids for cancer research. Specifically, we will develop a novel multi-channel fluorescence spectroscopic assay and a machine learning de-convolution algorithm to quantify the key metabolic parameters of in vitro cancer models (Aim 1). As there is a significant unmet clinical need for breast cancer (BC) radiotherapy (RT) sensitivity evaluation prior to treatment, we will demonstrate our non-destructive assay for early prediction of BC radiation responses within the decision-making window via longitudinal metabolic characterization of patient-derived organoids under radiation stresses (Aim 2). Our technology fills an important gap that exists between Seahorse Assay (in vitro cells) and Metabolomics (in vitro cells and ex vivo tissue) by providing a novel approach for non-destructive metabolism measurement on in vitro cancer models and patient-derived organoids. Our innovative RT sensitivity prediction model will directly impact BC patients by providing a novel paradigm for patients’ RT sensitivity prediction during the decision-making window. Once we demonstrate the proof-of-concept of our optical technique and the RT sensitivity prediction model, we will move our study to a large-scale trail in clinics with a goal of providing individualized RT for BC patients in our future R01 plan.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caigang Zhu其他文献

Caigang Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caigang Zhu', 18)}}的其他基金

Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 22.58万
  • 项目类别:
Non-destructive optical spectroscopic assay for high-throughput metabolic characterization of in vitro cell models and patient-derived organoids
用于体外细胞模型和患者来源类器官高通量代谢表征的无损光学光谱测定
  • 批准号:
    10666355
  • 财政年份:
    2022
  • 资助金额:
    $ 22.58万
  • 项目类别:
An intra-vital metabolic microscope to reveal the mechanisms of radiation resistance in head and neck carcinomas
活体代谢显微镜揭示头颈癌的抗辐射机制
  • 批准号:
    10573171
  • 财政年份:
    2017
  • 资助金额:
    $ 22.58万
  • 项目类别:
An intra-vital metabolic microscope to reveal the mechanisms of radiation resistance in head and neck carcinomas
活体代谢显微镜揭示头颈癌的抗辐射机制
  • 批准号:
    10271869
  • 财政年份:
    2017
  • 资助金额:
    $ 22.58万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.58万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 22.58万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 22.58万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 22.58万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 22.58万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 22.58万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 22.58万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 22.58万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 22.58万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 22.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了