Non-destructive optical spectroscopic assay for high-throughput metabolic characterization of in vitro cell models and patient-derived organoids
用于体外细胞模型和患者来源类器官高通量代谢表征的无损光学光谱测定
基本信息
- 批准号:10666355
- 负责人:
- 金额:$ 18.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:4T1AlgorithmsBiological AssayBiological MarkersBiomedical ResearchBreast Cancer ModelBreast Cancer PatientCancer ModelCancer PatientCell LineCell modelCellsClinicClinicalControl GroupsConvulsionsDecision MakingEvaluationFatty AcidsFiberFluorescenceFutureGenus HippocampusGoalsIn VitroIncubatedLightMachine LearningMatrix MetalloproteinasesMeasurementMeasuresMembrane PotentialsMetabolicMetabolismModelingNatureOpticsOrganoidsOutcomePatientsPerformancePreparationRadiationRadiation ToleranceRadiation therapyReaderRegimenRoleSamplingSiblingsSourceSpecimenSpectrum AnalysisStandardizationStressSurvival RateSystemTechniquesTechnologyTestingTherapeuticTherapeutic StudiesTimeTissuesUpdateWorkanticancer researchcancer cellcancer radiation therapycancer therapyexperienceexperimental groupfluorophoreglucose uptakehigh throughput screeningimprovedin vivoindexinginnovationmachine learning algorithmmalignant breast neoplasmmetabolomicsmitochondrial membranenew technologynovelnovel strategiespilot testpre-clinicalpreclinical studypredictive modelingprogramsradiation responseradioresistanttooltumortumor growthtumor metabolismuptake
项目摘要
Abstract
To maximize cancer patients’ survival rate post-therapy, in vitro immortal cancer cell models and newly
developed patient-derived organoids are widely used to study the role of tumor metabolism reprogramming in
tumor growth and survival under therapeutics stresses. Although conducting longitudinal metabolic
measurements on the same tumor sample during a course of therapy is critical for therapeutic studies, there
are surprisingly few techniques that can provide a systems-level view of tumor metabolism on in vitro cancer
models or organoids non-destructively. Several metabolic tools, such as Seahorse Assay and Metabolomics,
provide standardized metabolic measurements but often require destructive sample preparation. Relying on
the non-invasive nature of optical technique, this proposal seeks to fill the critical technical gap by developing
an optical spectroscopic assay that will enable non-destructive high-throughput metabolism measurement on in
vitro cancer models and organoids for cancer research. Specifically, we will develop a novel multi-channel
fluorescence spectroscopic assay and a machine learning de-convolution algorithm to quantify the key
metabolic parameters of in vitro cancer models (Aim 1). As there is a significant unmet clinical need for breast
cancer (BC) radiotherapy (RT) sensitivity evaluation prior to treatment, we will demonstrate our non-destructive
assay for early prediction of BC radiation responses within the decision-making window via longitudinal
metabolic characterization of patient-derived organoids under radiation stresses (Aim 2). Our technology fills
an important gap that exists between Seahorse Assay (in vitro cells) and Metabolomics (in vitro cells and ex
vivo tissue) by providing a novel approach for non-destructive metabolism measurement on in vitro cancer
models and patient-derived organoids. Our innovative RT sensitivity prediction model will directly impact BC
patients by providing a novel paradigm for patients’ RT sensitivity prediction during the decision-making
window. Once we demonstrate the proof-of-concept of our optical technique and the RT sensitivity prediction
model, we will move our study to a large-scale trail in clinics with a goal of providing individualized RT for BC
patients in our future R01 plan.
摘要
为了最大限度地提高癌症患者治疗后的生存率,体外永生化癌细胞模型和新的
开发的患者来源的类器官被广泛用于研究肿瘤代谢重编程在肿瘤发生中的作用。
治疗应激下的肿瘤生长和存活。虽然进行纵向代谢
在治疗过程中对同一肿瘤样本进行测量对于治疗研究至关重要,
令人惊讶的是,很少有技术可以提供体外癌症肿瘤代谢的系统水平视图
模型或类器官。几种代谢工具,如海马测定和代谢组学,
提供标准化的代谢测量,但通常需要破坏性的样品制备。依托
由于光学技术的非侵入性,该提案旨在通过开发
一种光学光谱分析,这将使非破坏性的高通量代谢测量,在
用于癌症研究的体外癌症模型和类器官。具体来说,我们将开发一种新颖的多渠道
荧光光谱分析和机器学习去卷积算法来量化关键
体外癌症模型的代谢参数(目的1)。由于乳腺癌的临床需求明显未得到满足,
癌症(BC)放疗(RT)敏感性评估治疗前,我们将证明我们的非破坏性
在决策窗口内通过纵向测量对BC辐射响应进行早期预测的试验
在辐射应激下患者来源的类器官的代谢表征(目的2)。我们的技术
海马测定(体外细胞)和代谢组学(体外细胞和前体细胞)之间存在一个重要的差距,
体内组织),为体外癌症的非破坏性代谢测量提供了一种新的方法
模型和患者衍生的类器官。我们创新的RT敏感性预测模型将直接影响BC
通过为患者在决策过程中的RT敏感性预测提供一种新的范例,
窗口一旦我们证明了我们的光学技术和RT灵敏度预测的概念验证,
模型,我们将把我们的研究转移到一个大规模的临床试验,目标是为BC提供个性化的RT
我们未来的R01计划中的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caigang Zhu其他文献
Caigang Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caigang Zhu', 18)}}的其他基金
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 18.74万 - 项目类别:
Non-destructive optical spectroscopic assay for high-throughput metabolic characterization of in vitro cell models and patient-derived organoids
用于体外细胞模型和患者来源类器官高通量代谢表征的无损光学光谱测定
- 批准号:
10348268 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
An intra-vital metabolic microscope to reveal the mechanisms of radiation resistance in head and neck carcinomas
活体代谢显微镜揭示头颈癌的抗辐射机制
- 批准号:
10573171 - 财政年份:2017
- 资助金额:
$ 18.74万 - 项目类别:
An intra-vital metabolic microscope to reveal the mechanisms of radiation resistance in head and neck carcinomas
活体代谢显微镜揭示头颈癌的抗辐射机制
- 批准号:
10271869 - 财政年份:2017
- 资助金额:
$ 18.74万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Continuing Grant