Biomechanical Regulation of Angiogenesis during Tumor Progression
肿瘤进展过程中血管生成的生物力学调节
基本信息
- 批准号:10349587
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressBehaviorBiochemicalBiological AssayBiomechanicsBlood VesselsBreast Cancer ModelCancer ModelCellsCellular biologyComplementDevelopmentEffectivenessEndothelial CellsEndotheliumEnvironmentExhibitsExtracellular MatrixFibrinFibroblastsFutureGelGoalsGoldGrantGrowthGrowth FactorIn VitroIntercellular FluidInvestigationKDR geneMalignant NeoplasmsMechanicsMechanoreceptorsMediatingMesenchymalMetabolicMicrofluidic MicrochipsMicrofluidicsModelingMusMyofibroblastNeoplasm MetastasisPathway interactionsPhasePhenotypePhysiologicalPopulationProcessPropertyProteinsRegulationResearchResearch PersonnelResearch TrainingResolutionRoleSeriesSignal TransductionSmooth Muscle Actin Staining MethodStudy modelsSystemTechniquesTherapeuticTimeTrainingTraining TechnicsTumor PromotionVascular Endothelial Growth FactorsVascularizationWorkangiogenesisanti-cancer therapeuticanticancer treatmentblood vessel developmentcancer cellcancer therapycancer typecareer developmentcell behaviordesignflexibilityfluid flowimprovedin vitro Modelin vivoin vivo Modelinnovationknock-downmechanical propertiesmechanical signalmechanotransductionmouse modelneoplastic cellnovelpreventrhospatiotemporaltargeted cancer therapytreatment strategytumortumor growthtumor microenvironmenttumor progression
项目摘要
Project Summary
During cancer progression, angiogenesis is upregulated to supply the ever-increasing metabolic demands of
the growing tumor. While targeting tumor-associated angiogenesis has been a therapeutic strategy for many
years, these techniques demonstrate limited effectiveness in many cancer types. We believe this may be due
to limited understanding of the biomechanical environment of the tumor. Recently cancer-associated
fibroblasts (CAFs) have been shown to be key regulators of the peritumoral environment responsible for
secreting several growth factors that control angiogenesis and metastasis. CAFs exhibit a myofibroblast-like
phenotype, with increases in alpha-smooth muscle actin and Snail1. We hypothesized that CAF-generated
increases in biomechanical strains enhance tip cell activation and drive angiogenesis in the tumor
microenvironment. Our initial work has demonstrated that CAF biomechanical activity is directly related to the
vascularization potential of these cells in in vitro models of vascular growth, and that inhibiting the
mechanotransductive pathways in these cells abrogated their ability to support the formation of blood vessel
networks. Continuing this research will further elucidate the roles of biomechanics during tumor progression as
well as reveal potential targets for novel anti-cancer therapeutic strategies. During the K99 portion of the grant,
we will (1) investigate the role of CAF biomechanics in an in vivo angiogenic mouse model and (2) optimize a
microfluidic platform for angiogenesis studies that will allow for isolation and interrogation of biomechanical
parameters. The proposed microtissue platform will be highly innovative in that it allows for independent control
of several key biomechanical properties. Importantly, this phase of the grant will complement the PI’s career
development by incorporating training in cancer cell biology analysis techniques as well as mouse models of
cancer progression. During the R00 portion of the grant, we will investigate how endothelial cells respond to
mechanical cues from CAFs utilizing the microtissue model previously developed. Finally we will investigate
potential anti-cancer therapeutic strategies targeting CAF biomechanical promotion of tumor development in a
mouse model of breast cancer. Ultimately this work has significant implications for not only understanding
biomechanics of cancer progression but also the development of a unique in vitro microtissue model that will
permit interrogation of biomechanics in a truly original manner. The training, techniques, and approaches
developed during this grant should open several new avenues for future studies and will allow the PI to
transition into a fully-independent investigator.
项目摘要
在癌症进展过程中,血管生成被上调以供应肿瘤细胞不断增加的代谢需求。
生长的肿瘤虽然靶向肿瘤相关的血管生成已成为许多肿瘤患者的治疗策略,
多年来,这些技术在许多癌症类型中表现出有限的有效性。我们认为这可能是由于
对肿瘤生物力学环境的了解有限。近期癌症相关
成纤维细胞(CAF)已被证明是负责肿瘤周围环境的关键调节因子,
分泌几种控制血管生成和转移的生长因子。CAFs表现出肌纤维母细胞样的
表型,α-平滑肌肌动蛋白和蜗牛1增加。我们假设CAF产生的
生物力学应变的增加增强了肿瘤中的尖端细胞活化并驱动血管生成
微环境我们的初步工作已经证明,CAF的生物力学活动是直接相关的,
这些细胞在血管生长的体外模型中的血管形成潜力,以及抑制这些细胞的血管形成潜力。
这些细胞中的机械传导途径消除了它们支持血管形成的能力
网络.继续这项研究将进一步阐明生物力学在肿瘤进展过程中的作用,
并揭示了新的抗癌治疗策略的潜在靶点。在赠款的K99部分,
我们将(1)研究CAF生物力学在体内血管生成小鼠模型中的作用,(2)优化CAF生物力学模型。
用于血管生成研究的微流控平台,将允许分离和询问生物力学
参数拟议的微组织平台将是高度创新的,因为它允许独立控制
几个关键的生物力学特性。重要的是,这一阶段的赠款将补充PI的职业生涯
通过结合癌细胞生物学分析技术的培训以及
癌症进展在拨款的R 00部分,我们将研究内皮细胞如何对
利用先前开发的微组织模型从CAF获得机械线索。最后我们将调查
潜在的抗癌治疗策略,靶向CAF生物力学促进肿瘤的发展,
小鼠乳腺癌模型。最终,这项工作不仅对理解
癌症进展的生物力学,而且还开发了独特的体外微组织模型,
允许以真正原始的方式询问生物力学。培训、技术和方法
在此期间开发的赠款应开辟未来研究的几个新途径,并将允许PI
转变为完全独立的调查员
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanoregulation of Vascular Endothelial Growth Factor Receptor 2 in Angiogenesis.
- DOI:10.3389/fcvm.2021.804934
- 发表时间:2021
- 期刊:
- 影响因子:3.6
- 作者:Miller B;Sewell-Loftin MK
- 通讯作者:Sewell-Loftin MK
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Kathryn Sewell-Loftin其他文献
Strain and hyaluronic acid interact to regulate ovarian cancer cell proliferation, migration, and drug resistance
- DOI:
10.1016/j.mbm.2024.100094 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Maranda Kramer;Allyson Criswell;Kamari Marzette;Emerson Cutcliffe;Mary Kathryn Sewell-Loftin - 通讯作者:
Mary Kathryn Sewell-Loftin
Mary Kathryn Sewell-Loftin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Kathryn Sewell-Loftin', 18)}}的其他基金
Biomechanical Regulation of Angiogenesis during Tumor Progression
肿瘤进展过程中血管生成的生物力学调节
- 批准号:
10160835 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
Biomechanical Regulation of Angiogenesis during Tumor Progression
肿瘤进展过程中血管生成的生物力学调节
- 批准号:
9582642 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant