Biomechanical Regulation of Angiogenesis during Tumor Progression
肿瘤进展过程中血管生成的生物力学调节
基本信息
- 批准号:9582642
- 负责人:
- 金额:$ 9.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBehaviorBiochemicalBiological AssayBiomechanicsBlood VesselsBreast Cancer ModelCancer ModelCellsCellular biologyComplementCuesDevelopmentEffectivenessEndothelial CellsEnvironmentExhibitsExtracellular MatrixFibrinFibroblastsFutureGelGoalsGoldGrantGrowthGrowth FactorIn VitroIntercellular FluidInvestigationKDR geneMalignant NeoplasmsMechanicsMechanoreceptorsMediatingMesenchymalMetabolicMicrofluidic MicrochipsMicrofluidicsModelingMusMyofibroblastNeoplasm MetastasisPathway interactionsPhasePhenotypePhysiologicalPopulationProcessPropertyProteinsRegulationResearchResearch PersonnelResearch TrainingResolutionRoleSeriesSignal TransductionSmooth Muscle Actin Staining MethodStudy modelsSystemTechniquesTherapeuticTimeTrainingTraining TechnicsTumor PromotionVascular Endothelial Growth FactorsVascularizationWorkangiogenesisanti-cancer therapeuticanticancer treatmentblood vessel developmentcancer cellcancer therapycancer typecareer developmentcell behaviordesignflexibilityfluid flowimprovedin vitro Modelin vivoin vivo Modelinnovationknock-downmechanical propertiesmechanotransductionmouse modelneoplastic cellnovelpreventrhospatiotemporaltargeted cancer therapytreatment strategytumortumor growthtumor microenvironmenttumor progression
项目摘要
Project Summary
During cancer progression, angiogenesis is upregulated to supply the ever-increasing metabolic demands of
the growing tumor. While targeting tumor-associated angiogenesis has been a therapeutic strategy for many
years, these techniques demonstrate limited effectiveness in many cancer types. We believe this may be due
to limited understanding of the biomechanical environment of the tumor. Recently cancer-associated
fibroblasts (CAFs) have been shown to be key regulators of the peritumoral environment responsible for
secreting several growth factors that control angiogenesis and metastasis. CAFs exhibit a myofibroblast-like
phenotype, with increases in alpha-smooth muscle actin and Snail1. We hypothesized that CAF-generated
increases in biomechanical strains enhance tip cell activation and drive angiogenesis in the tumor
microenvironment. Our initial work has demonstrated that CAF biomechanical activity is directly related to the
vascularization potential of these cells in in vitro models of vascular growth, and that inhibiting the
mechanotransductive pathways in these cells abrogated their ability to support the formation of blood vessel
networks. Continuing this research will further elucidate the roles of biomechanics during tumor progression as
well as reveal potential targets for novel anti-cancer therapeutic strategies. During the K99 portion of the grant,
we will (1) investigate the role of CAF biomechanics in an in vivo angiogenic mouse model and (2) optimize a
microfluidic platform for angiogenesis studies that will allow for isolation and interrogation of biomechanical
parameters. The proposed microtissue platform will be highly innovative in that it allows for independent control
of several key biomechanical properties. Importantly, this phase of the grant will complement the PI’s career
development by incorporating training in cancer cell biology analysis techniques as well as mouse models of
cancer progression. During the R00 portion of the grant, we will investigate how endothelial cells respond to
mechanical cues from CAFs utilizing the microtissue model previously developed. Finally we will investigate
potential anti-cancer therapeutic strategies targeting CAF biomechanical promotion of tumor development in a
mouse model of breast cancer. Ultimately this work has significant implications for not only understanding
biomechanics of cancer progression but also the development of a unique in vitro microtissue model that will
permit interrogation of biomechanics in a truly original manner. The training, techniques, and approaches
developed during this grant should open several new avenues for future studies and will allow the PI to
transition into a fully-independent investigator.
项目摘要
在癌症进展过程中,血管生成被上调,以满足不断增长的代谢需求
不断生长的肿瘤。虽然以肿瘤相关血管生成为靶点一直是许多人的治疗策略
多年来,这些技术在许多癌症类型中显示出有限的有效性。我们认为这可能是由于
对肿瘤的生物力学环境的了解有限。最近与癌症相关的
成纤维细胞(CAF)已被证明是肿瘤周围环境的关键调节因子,负责
分泌几种控制血管生成和转移的生长因子。CAF呈肌成纤维样细胞
表型,α-平滑肌肌动蛋白和Snail1增加。我们假设由CAF产生的
生物力学应变的增加增强了肿瘤中TIP细胞的激活并驱动了血管生成
微环境。我们的初步工作表明,CAF的生物力学活性与
在血管生长的体外模型中,这些细胞的血管形成潜力,以及抑制
这些细胞中的机械转导途径丧失了它们支持血管形成的能力
网络。继续这项研究将进一步阐明生物力学在肿瘤进展中的作用
并揭示了新的抗癌治疗策略的潜在靶点。在拨款的K99部分期间,
我们将(1)研究CAF在体内血管生成小鼠模型中的生物力学作用;(2)优化
用于血管生成研究的微流控平台,将允许分离和询问生物力学
参数。拟议的微组织平台将是高度创新的,因为它允许独立控制
几个关键的生物力学特性。重要的是,这一阶段的拨款将补充私人侦探的职业生涯
通过结合癌细胞生物学分析技术以及小鼠模型的培训进行开发
癌症进展。在拨款的R00部分,我们将调查内皮细胞如何应对
利用之前开发的微组织模型来自CAF的机械提示。最后我们会调查
以CAF生物力学促进肿瘤发展为靶点的潜在抗癌治疗策略
小鼠乳腺癌模型。归根结底,这项工作不仅对理解
癌症进展的生物力学,以及一种独特的体外微组织模型的开发,它将
允许以真正原创的方式审问生物力学。培训、技巧和方法
在这笔赠款期间开发的应该会为未来的研究开辟几个新的途径,并将使PI能够
转变为一名完全独立的调查员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Kathryn Sewell-Loftin其他文献
Strain and hyaluronic acid interact to regulate ovarian cancer cell proliferation, migration, and drug resistance
- DOI:
10.1016/j.mbm.2024.100094 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Maranda Kramer;Allyson Criswell;Kamari Marzette;Emerson Cutcliffe;Mary Kathryn Sewell-Loftin - 通讯作者:
Mary Kathryn Sewell-Loftin
Mary Kathryn Sewell-Loftin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Kathryn Sewell-Loftin', 18)}}的其他基金
Biomechanical Regulation of Angiogenesis during Tumor Progression
肿瘤进展过程中血管生成的生物力学调节
- 批准号:
10160835 - 财政年份:2018
- 资助金额:
$ 9.1万 - 项目类别:
Biomechanical Regulation of Angiogenesis during Tumor Progression
肿瘤进展过程中血管生成的生物力学调节
- 批准号:
10349587 - 财政年份:2018
- 资助金额:
$ 9.1万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Collaborative Research: Biochemical Basis of Cellular Circadian Behavior
合作研究:细胞昼夜节律行为的生化基础
- 批准号:
1854392 - 财政年份:2018
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
Elucidating the mechanical and biochemical signals that regulate the cooperative behavior of collectively migrating cells
阐明调节集体迁移细胞合作行为的机械和生化信号
- 批准号:
18K14700 - 财政年份:2018
- 资助金额:
$ 9.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Biochemical Basis of Cellular Circadian Behavior
合作研究:细胞昼夜节律行为的生化基础
- 批准号:
1656647 - 财政年份:2017
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
Biochemical and Molecular Basis of Circadian Behavior
昼夜节律行为的生化和分子基础
- 批准号:
0920417 - 财政年份:2009
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
A Multi-Scale Approach to Understanding the Mechanical and Biochemical Behavior of Tissue Engineered Blood Vessels
了解组织工程血管的机械和生化行为的多尺度方法
- 批准号:
0700507 - 财政年份:2007
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
CompBio: Simulation of self-emerging properties of coupled biochemical and cellular networks in social behavior of Myxobacteria
CompBio:模拟粘细菌社会行为中生化和细胞网络耦合的自生特性
- 批准号:
0622940 - 财政年份:2006
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
Biochemical and cookery behavior of arsenic in seaweeds, Hijiki (Sargassum fusiforme) and Akamoku (Sargassum horneri)
海藻、羊栖菜 (Sargassum fusiforme) 和赤木 (Sargassum horneri) 中砷的生化和烹饪行为
- 批准号:
18500609 - 财政年份:2006
- 资助金额:
$ 9.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BIOCHEMICAL & BEHAVIOR PROPERTIES OF PRIMARY CILIA: KIDNEY EPITHELIA
生化
- 批准号:
6280706 - 财政年份:1998
- 资助金额:
$ 9.1万 - 项目类别: