Optimizing Efficiency and Quality of Brachytherapy for Cervical Cancer using Machine Learning Based Automation
使用基于机器学习的自动化优化宫颈癌近距离放射治疗的效率和质量
基本信息
- 批准号:10351221
- 负责人:
- 金额:$ 25.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-14 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAlgorithmsAnatomyAutomationBlindedBrachytherapyCervicalClinicalClinical TreatmentClinical TrialsClinical Trials DesignComplexConsumptionCountryDataDecision MakingDoseEthicsEvaluationFoundationsFutureGoalsGrantHumanImageInferiorKnowledgeLabelLeadLinkMachine LearningMalignant NeoplasmsMalignant neoplasm of cervix uteriMalignant neoplasm of prostateManualsMeasuresMedicalMentorsMentorshipMethodsModelingModernizationOrganOutputPatient imagingPatient-Focused OutcomesPatientsPhysiciansPositioning AttributeProcessPublic HealthRadiationRadiation Dose UnitRadiation therapyRadioactiveRadiotherapy ResearchResearchResearch PersonnelResourcesSedation procedureSourceStandardizationStatistical Data InterpretationStatistical ModelsSystemTechniquesTechnologyTestingTimeToxic effectTrainingTraining ProgramsValidationVariantWomanWorkbasecancer therapycancer typecareer developmentclinical efficacyclinical trial implementationcombatcomputer programcomputerized toolsconvolutional neural networkdeep learningefficacy evaluationexperienceimage processingimplementation barriersimplementation scienceimprovedinnovationknowledge basemachine learning modelmalignant breast neoplasmoptimal treatmentspressureprospectivestandard of carestatisticstechnology validationthree-dimensional modelingtooltreatment planningtumor
项目摘要
Current treatment planning for brachytherapy of cervical cancer is performed with manual techniques that are
both time-consuming and subjective. Manual treatment planning takes 95 minutes on average and occurs
while patients are sedated, and the quality of the treatments is highly dependent on the expertise of the
physician. Unfortunately, the resource intensiveness and need for specialized expertise are barriers to
implementation of brachytherapy, and as a result many centers are not offering this essential treatment for
cervical cancer. Alarmingly, this rapid decline in brachytherapy utilization has been linked to 12% reductions in
patient survival. To overcome the barriers to delivering highly effective brachytherapy, there is a critical need
for tools that improve the efficiency and reduce the complexity of treatment planning for each patient. My long-
term goal is to become an independent investigator focused on automating brachytherapy cancer treatment
with machine learning, producing button-click solutions that will significantly upgrade the quality of
brachytherapy and combat declining utilization. I have significant experience in modeling, image processing
and computer programming and I want to build on this skillset with a training program that will prepare me for
independence. I have assembled an exceptional mentorship team, which includes expertise in machine
learning, clinical trials, implementation science and statistics. We formed a training plan to gain expertise in (1)
deep learning, (2) advanced statistical analysis, (3) design of clinical trials and implementation of technology
and (4) research career development. The research goal of this proposal is to develop a tool for fully
automated cervical brachytherapy treatment planning, which uses machine learning models to make
predictions for new patients. The central hypothesis is that automated planning using machine learning will
generate non-inferior or even superior plans in significantly reduced treatment planning time. This hypothesis
will be tested with the following specific aims: (1) Develop machine learning models, which use labelled patient
images to predict radiation dose; (2) Develop and evaluate efficacy of a pipeline for automated brachytherapy
planning; and (3) Prospectively measure the efficiency and clinical impact of automated brachytherapy
planning. For Aim 1, convolutional neural networks will be developed to predict 3D radiation dose from
imaging. Aim 2 will convert predicted doses into deliverable treatment plans using gradient-descent
optimization to determine optimal treatment parameters. Aim 3 will provide an end-to-end validation of the
automated planning by testing it in real-time clinical workflow. This work is innovative because it presents the
first clinical validation of an automated treatment planning system for brachytherapy of cervical cancer. The
proposed research is significant because it will revolutionize the current brachytherapy paradigm by applying
machine learning to automate and standardize time-consuming, manual processes. This work is a key step
towards my future R01 submission on multi-institutional implementation of automated cervical brachytherapy.
目前宫颈癌近距离放疗的治疗计划是通过手工技术进行的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandra Michelle Meyers其他文献
Sandra Michelle Meyers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandra Michelle Meyers', 18)}}的其他基金
Optimizing Efficiency and Quality of Brachytherapy for Cervical Cancer using Machine Learning Based Automation
使用基于机器学习的自动化优化宫颈癌近距离放射治疗的效率和质量
- 批准号:
10645003 - 财政年份:2022
- 资助金额:
$ 25.04万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 25.04万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 25.04万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 25.04万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 25.04万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 25.04万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 25.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 25.04万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 25.04万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 25.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 25.04万 - 项目类别:
Studentship














{{item.name}}会员




