Optimizing Efficiency and Quality of Brachytherapy for Cervical Cancer using Machine Learning Based Automation
使用基于机器学习的自动化优化宫颈癌近距离放射治疗的效率和质量
基本信息
- 批准号:10645003
- 负责人:
- 金额:$ 24.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-14 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAlgorithmsAnatomyAutomationBlindedBrachytherapyCervicalCessation of lifeClinicalClinical TreatmentClinical TrialsClinical Trials DesignComplexConsumptionCountryDataDecision MakingDoseEthicsEvaluationFoundationsFutureGoalsGrantHumanImageInferiorInstitutionKnowledgeLabelLinkMachine LearningMalignant NeoplasmsMalignant neoplasm of cervix uteriMalignant neoplasm of prostateManualsMeasuresMedicalMentorsMentorshipMethodsModelingModernizationOrganOutputPatient imagingPatient-Focused OutcomesPatientsPhysiciansPositioning AttributeProcessPublic HealthRadiationRadiation Dose UnitRadiation therapyRadioactiveRadiotherapy ResearchResearchResearch PersonnelResourcesSedation procedureSourceStandardizationStatistical Data InterpretationStatistical ModelsSystemTechniquesTechnologyTestingTimeToxic effectTrainingTraining ProgramsValidationVariantWomanWorkautomated treatment planningcancer therapycancer typecareer developmentclinical efficacyclinical implementationcombatcomputer programcomputerized toolsconvolutional neural networkdeep learningefficacy evaluationexperienceimage processingimplementation barriersimplementation scienceimprovedinnovationknowledge basemachine learning modelmalignant breast neoplasmoptimal treatmentspredictive modelingpressureprospectiveskillsstandard of carestatisticstechnology validationthree-dimensional modelingtooltreatment planningtumor
项目摘要
Current treatment planning for brachytherapy of cervical cancer is performed with manual techniques that are
both time-consuming and subjective. Manual treatment planning takes 95 minutes on average and occurs
while patients are sedated, and the quality of the treatments is highly dependent on the expertise of the
physician. Unfortunately, the resource intensiveness and need for specialized expertise are barriers to
implementation of brachytherapy, and as a result many centers are not offering this essential treatment for
cervical cancer. Alarmingly, this rapid decline in brachytherapy utilization has been linked to 12% reductions in
patient survival. To overcome the barriers to delivering highly effective brachytherapy, there is a critical need
for tools that improve the efficiency and reduce the complexity of treatment planning for each patient. My long-
term goal is to become an independent investigator focused on automating brachytherapy cancer treatment
with machine learning, producing button-click solutions that will significantly upgrade the quality of
brachytherapy and combat declining utilization. I have significant experience in modeling, image processing
and computer programming and I want to build on this skillset with a training program that will prepare me for
independence. I have assembled an exceptional mentorship team, which includes expertise in machine
learning, clinical trials, implementation science and statistics. We formed a training plan to gain expertise in (1)
deep learning, (2) advanced statistical analysis, (3) design of clinical trials and implementation of technology
and (4) research career development. The research goal of this proposal is to develop a tool for fully
automated cervical brachytherapy treatment planning, which uses machine learning models to make
predictions for new patients. The central hypothesis is that automated planning using machine learning will
generate non-inferior or even superior plans in significantly reduced treatment planning time. This hypothesis
will be tested with the following specific aims: (1) Develop machine learning models, which use labelled patient
images to predict radiation dose; (2) Develop and evaluate efficacy of a pipeline for automated brachytherapy
planning; and (3) Prospectively measure the efficiency and clinical impact of automated brachytherapy
planning. For Aim 1, convolutional neural networks will be developed to predict 3D radiation dose from
imaging. Aim 2 will convert predicted doses into deliverable treatment plans using gradient-descent
optimization to determine optimal treatment parameters. Aim 3 will provide an end-to-end validation of the
automated planning by testing it in real-time clinical workflow. This work is innovative because it presents the
first clinical validation of an automated treatment planning system for brachytherapy of cervical cancer. The
proposed research is significant because it will revolutionize the current brachytherapy paradigm by applying
machine learning to automate and standardize time-consuming, manual processes. This work is a key step
towards my future R01 submission on multi-institutional implementation of automated cervical brachytherapy.
目前宫颈癌近距离放射治疗的治疗计划是用手动技术进行的,
既费时又主观。手动治疗计划平均需要95分钟,
当病人被镇静时,治疗的质量在很大程度上取决于医生的专业知识。
医生。不幸的是,资源密集和对专门知识的需要是实现这一目标的障碍。
近距离放射治疗的实施,因此,许多中心不提供这种基本的治疗,
宫颈癌令人担忧的是,近距离放射治疗使用率的快速下降与12%的死亡率下降有关。
患者生存率。为了克服提供高效近距离放射治疗的障碍,
为每位患者提高治疗计划的效率并降低其复杂性。我的长-
长期目标是成为一名独立的研究人员,专注于自动化近距离放射治疗癌症治疗
通过机器学习,生产按钮点击解决方案,这将大大提升
近距离放射治疗和对抗使用率下降。我在建模,图像处理,
和计算机编程,我想建立在这个技能与培训计划,将我准备
独立我组建了一个出色的导师团队,其中包括机器方面的专业知识,
学习,临床试验,实施科学和统计学。我们制定了一个培训计划,以获得以下方面的专业知识:
深度学习,(2)高级统计分析,(3)临床试验设计和技术实施
(4)科研生涯发展。本提案的研究目标是开发一种工具,
自动宫颈近距离放射治疗计划,使用机器学习模型,
对新患者的预测核心假设是,使用机器学习的自动规划将
在显著减少的治疗计划时间内生成非劣或甚至上级计划。这一假设
将测试以下具体目标:(1)开发机器学习模型,使用标记的患者
图像预测辐射剂量;(2)开发和评估自动近距离放射治疗管道的有效性
计划;和(3)Proximity测量自动近距离放射治疗的效率和临床影响
规划对于Aim 1,将开发卷积神经网络来预测3D辐射剂量,
显像目标2将使用梯度下降法将预测剂量转换为可交付的治疗计划
优化以确定最佳治疗参数。目标3将提供对
通过在实时临床工作流程中进行测试来实现自动规划。这项工作是创新的,因为它提出了
宫颈癌近距离放射治疗自动治疗计划系统的首次临床验证。的
拟议的研究是重要的,因为它将彻底改变目前的近距离放射治疗模式,
通过机器学习实现耗时的手动流程的自动化和标准化。这项工作是关键的一步
关于多机构实施自动宫颈近距离放射治疗的未来R 01提交资料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandra Michelle Meyers其他文献
Sandra Michelle Meyers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandra Michelle Meyers', 18)}}的其他基金
Optimizing Efficiency and Quality of Brachytherapy for Cervical Cancer using Machine Learning Based Automation
使用基于机器学习的自动化优化宫颈癌近距离放射治疗的效率和质量
- 批准号:
10351221 - 财政年份:2022
- 资助金额:
$ 24.78万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 24.78万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 24.78万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 24.78万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 24.78万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 24.78万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 24.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 24.78万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
Studentship














{{item.name}}会员




