Ultrasonic modulation of cellular electrical signaling

细胞电信号的超声波调制

基本信息

  • 批准号:
    10352016
  • 负责人:
  • 金额:
    $ 11.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Ultrasound (US) neuromodulation (NM) utilizes mechanical energy from sound to modulate the physiology of excitable cells through mechanosensitive ion channels (MSIC). Its uninvasive bone-penetrating nature combined with a unique focusing capability provides advantages over optogenetics and chemogenetics. Recently, the FDA has approved transcranial USNM. There is a lack of a molecular understanding on how US modulates cellular excitability. Furthermore, not all cells express channels that respond to US. To address these issues, novel experimental systems and techniques will be implemented to extract mechanistic biophysical information and engineer sonogenetic tools for robust transgenic expression. The biophysical effects of US on TRAAK K+ channels were recently characterized because of its potential to serve as a sonogenetic silencer of neurons. The endogenous expression of TRAAK at the nodes of Ranvier also makes it an attractive candidate for inhibitory NM when targeting native myelinated axons in the white matter. During the mentored phase (Aim 1, K99), the fundamental biophysical effects of US will continue to be characterized on TRAAK and other channels. This includes experiments to calculate tension and surveying optimal US parameters to maximize channel stimulation. Preliminary data suggests that the CFTR Cl- channel is sensitive to US. Other MSIC will also be screened to identify those sensitive to US. The next aim (Aim 2, K99/R00) looks to optimize TRAAK and other MSIC into sonogenetic tools. To transform TRAAK into a US-hypersensitive action potential generator, structure guided mutagenesis will be used to increase its sensitivity to ultrasound and permeability to Na+. Aim 3 (R00 phase) looks to implement NM by stimulating endogenous MSIC and transgenically expressed sonogenetic tools. They will be activated in vitro in mouse brain slices and cultured neurons, and in vivo in live mice. In summary, this proposal looks to screen for and optimize the activation of endogenous MSIC with US, and also engineer novel sonogenetic tools. In a short period of time, this work will advance our understanding of the effects of US on MSIC and NM. The long-term goal is to implement these tools for clinical use in minimally invasive NM. This research program will generate a platform of complementary techniques and applicable knowledge that can also be applied by others for further studies in sonogenetics and USNM. Dr. Sorum's mentors, Profs. Brohawn and Adesnik, have expertise that spans many areas of neuroscience including mechanobiology, MSIC structure/function, optogenetics, NM, neural circuits, and behavior. Two additional years of training will allow him to fully develop skills in molecular, cellular and systems neuroscience and merge them with USNM and sonogenetics.
超声(US)神经调节(NM)利用声产生的机械能,通过机械敏感离子通道(MSIC)来调节可兴奋细胞的生理。其非侵入性的骨穿透特性与独特的聚焦能力相结合,提供了比光遗传学和化学遗传学更好的优势。最近,FDA批准了经颅USNM。目前对US如何调节细胞兴奋性缺乏分子上的了解。此外,并不是所有的细胞都表达对US有反应的通道。为了解决这些问题,将实施新的实验系统和技术来提取机械性生物物理信息,并设计声学工具以实现强大的转基因表达。最近研究了US对TRAAK K+通道的生物物理效应,因为它具有潜在的神经元声学沉默作用。TRAAK在Ranvier结节的内源性表达也使其成为以白质内天然有髓轴突为靶点的抑制性NM的候选靶点。在指导阶段(目标1,K99),US的基本生物物理效应将继续在TRAAK和其他渠道上表征。这包括计算张力和测量最佳US参数以最大化通道刺激的实验。初步数据表明CFTRCl-通道对US很敏感。其他MSIC也将被筛选,以确定那些对美国敏感的人。下一个目标(目标2,K99/R00)着眼于将TRAAK和其他MSIC优化为声学工具。为了将TRAAK转化为美国超敏动作电位发生器,将采用结构导向诱变来提高其对超声波的敏感性和对Na+的通透性。目标3(R00阶段)希望通过刺激内源性MSIC和转基因表达的声波发生工具来实现NM。它们将在体外在小鼠脑片和培养的神经元中激活,并在活体小鼠体内激活。综上所述,这项提案旨在筛选和优化US的内源性MSIC的激活,并设计出新的声学工具。在短时间内,这项工作将促进我们对美国对MSIC和NM的影响的理解。长期目标是将这些工具应用于微创NM的临床应用。这一研究计划将产生一个补充技术和适用知识的平台,其他人也可以将其应用于声遗传学和USNM的进一步研究。索勒姆博士的导师,索勒姆教授。Brohawn和Adesnik拥有跨越神经科学的许多领域的专业知识,包括机械生物学、MSIC结构/功能、光遗传学、NM、神经回路和行为学。另外两年的培训将使他能够充分发展分子、细胞和系统神经科学方面的技能,并将它们与USNM和声遗传学相结合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Em Ben Sorum其他文献

Em Ben Sorum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Em Ben Sorum', 18)}}的其他基金

Ultrasonic modulation of cellular electrical signaling
细胞电信号的超声波调制
  • 批准号:
    10540394
  • 财政年份:
    2022
  • 资助金额:
    $ 11.59万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 11.59万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 11.59万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 11.59万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 11.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 11.59万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 11.59万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 11.59万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 11.59万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 11.59万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 11.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了