Ultrasonic modulation of cellular electrical signaling

细胞电信号的超声波调制

基本信息

  • 批准号:
    10540394
  • 负责人:
  • 金额:
    $ 11.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Ultrasound (US) neuromodulation (NM) utilizes mechanical energy from sound to modulate the physiology of excitable cells through mechanosensitive ion channels (MSIC). Its uninvasive bone-penetrating nature combined with a unique focusing capability provides advantages over optogenetics and chemogenetics. Recently, the FDA has approved transcranial USNM. There is a lack of a molecular understanding on how US modulates cellular excitability. Furthermore, not all cells express channels that respond to US. To address these issues, novel experimental systems and techniques will be implemented to extract mechanistic biophysical information and engineer sonogenetic tools for robust transgenic expression. The biophysical effects of US on TRAAK K+ channels were recently characterized because of its potential to serve as a sonogenetic silencer of neurons. The endogenous expression of TRAAK at the nodes of Ranvier also makes it an attractive candidate for inhibitory NM when targeting native myelinated axons in the white matter. During the mentored phase (Aim 1, K99), the fundamental biophysical effects of US will continue to be characterized on TRAAK and other channels. This includes experiments to calculate tension and surveying optimal US parameters to maximize channel stimulation. Preliminary data suggests that the CFTR Cl- channel is sensitive to US. Other MSIC will also be screened to identify those sensitive to US. The next aim (Aim 2, K99/R00) looks to optimize TRAAK and other MSIC into sonogenetic tools. To transform TRAAK into a US-hypersensitive action potential generator, structure guided mutagenesis will be used to increase its sensitivity to ultrasound and permeability to Na+. Aim 3 (R00 phase) looks to implement NM by stimulating endogenous MSIC and transgenically expressed sonogenetic tools. They will be activated in vitro in mouse brain slices and cultured neurons, and in vivo in live mice. In summary, this proposal looks to screen for and optimize the activation of endogenous MSIC with US, and also engineer novel sonogenetic tools. In a short period of time, this work will advance our understanding of the effects of US on MSIC and NM. The long-term goal is to implement these tools for clinical use in minimally invasive NM. This research program will generate a platform of complementary techniques and applicable knowledge that can also be applied by others for further studies in sonogenetics and USNM. Dr. Sorum's mentors, Profs. Brohawn and Adesnik, have expertise that spans many areas of neuroscience including mechanobiology, MSIC structure/function, optogenetics, NM, neural circuits, and behavior. Two additional years of training will allow him to fully develop skills in molecular, cellular and systems neuroscience and merge them with USNM and sonogenetics.
超声(US)神经调节(NM)利用来自声音的机械能,通过机械敏感离子通道(MSIC)调节可兴奋细胞的生理机能。它的非侵入性穿透性与独特的聚焦能力相结合,提供了光遗传学和化学遗传学的优势。最近,FDA批准了经颅USNM。缺乏对US如何调节细胞兴奋性的分子理解。此外,并非所有细胞都表达响应US的通道。为了解决这些问题,将采用新的实验系统和技术来提取机械生物物理信息,并设计出稳健的转基因表达的声遗传学工具。US对TRAAK K+通道的生物物理效应最近被表征,因为它可能作为神经元的声发生消声器。TRAAK在Ranvier淋巴结的内源性表达也使其成为针对白质中天然髓鞘轴突的抑制性NM的有吸引力的候选物。在指导阶段(Aim 1, K99), US的基本生物物理效应将继续在TRAAK和其他通道上表现出来。这包括计算张力和测量最佳美国参数以最大限度地刺激通道的实验。初步数据表明CFTR Cl-通道对US敏感。其他MSIC也将进行筛选,以确定对美国敏感的公司。下一个目标(aim 2, K99/R00)是将TRAAK和其他MSIC优化为声源工具。为了将TRAAK转化为us -超敏动作电位发生器,将使用结构引导诱变来提高其对超声的敏感性和对Na+的渗透性。目的3 (R00期)通过刺激内源性MSIC和转基因表达的超声工具来实现NM。它们将在体外的小鼠脑切片和培养的神经元中被激活,在活体小鼠中被激活。综上所述,本研究旨在筛选和优化内源性MSIC的激活,并设计出新的超声发生工具。在短时间内,这项工作将促进我们对US对MSIC和NM的影响的理解。长期目标是将这些工具应用于微创NM的临床应用。这项研究计划将产生一个互补技术和适用知识的平台,也可以应用于其他人在超声遗传学和USNM方面的进一步研究。索伦博士的导师,教授。Brohawn和Adesnik的专业知识涵盖了神经科学的许多领域,包括机械生物学、MSIC结构/功能、光遗传学、NM、神经回路和行为。另外两年的培训将使他能够充分发展分子,细胞和系统神经科学方面的技能,并将其与USNM和超声遗传学相结合。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Em Ben Sorum其他文献

Em Ben Sorum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Em Ben Sorum', 18)}}的其他基金

Ultrasonic modulation of cellular electrical signaling
细胞电信号的超声波调制
  • 批准号:
    10352016
  • 财政年份:
    2022
  • 资助金额:
    $ 11.59万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 11.59万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 11.59万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 11.59万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 11.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 11.59万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 11.59万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 11.59万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 11.59万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 11.59万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 11.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了