Cellular and molecular analysis of startle modulation
惊吓调节的细胞和分子分析
基本信息
- 批准号:10352379
- 负责人:
- 金额:$ 52.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-15 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAdaptor Signaling ProteinAddressAllelesAnimalsAttention deficit hyperactivity disorderBehaviorBehavioralBehavioral AssayBrainCRISPR/Cas technologyCalcium ChannelCharacteristicsClathrinCloningCognition DisordersCognitiveCollectionComplexCritical PathwaysData SetDefectEndocytosisExhibitsGene ExpressionGene MutationGenesGeneticGenetic ModelsGenetic ScreeningHumanHuntington geneImageImpairmentInvertebratesKnock-outLarvaLearningLinkMammalsManualsMeasuresMediatingMetalloproteasesMolecularMolecular AnalysisMolecular GeneticsMorphologyNervous system structureNeuronsPathway interactionsPatternPerformancePharmacogeneticsPharmacologyPhenotypePopulationProbabilityProcessProteinsReceptor SignalingResolutionRoleSigma FactorSignal PathwaySiteStartle ReactionStereotypingStimulusSynapsesSystemTransferaseTransgenic OrganismsVertebratesZebrafishautism spectrum disorderbasebehavioral pharmacologybehavioral phenotypingbehavioral plasticitybehavioral responsebioinformatics pipelinecell typeexperimental studygenetic approachgenome sequencinghabit learninghabituationhindbrainhuman diseaseimaging approachin vivolearned behaviormolecular modelingmutantneural circuitneuropsychiatric disordernovelpalmitoylationprepulse inhibitionreceptorreceptor mediated endocytosisrelating to nervous systemresponsescreeningsmall molecule librariessuccesssynaptic functiontoolvoltagewhole genome
项目摘要
Abstract
A remarkable feature of the nervous system is its ability to adjust stereotyped behavioral responses in a context
dependent manner. In vertebrates, sudden and intense acoustic stimuli evoke an evolutionarily conserved startle
response. While the execution of the acoustic startle response is extremely stereotyped, response probability is
modulated in a context-dependent manner. For example, repeated presentation of a startling stimulus
suppresses a behavioral response, representing a simple form of learning known as habituation. In humans,
modulation of startle behavior is impaired in several neuropsychiatric disorders, including in Attention Deficit-
Hyperactivity Disorder and autism spectrum disorders. Despite its importance, the molecular mechanisms
underlying startle modulation not well understood. Zebrafish show a remarkable behavioral plasticity, and we
have previously shown that larvae exhibit modulation of the acoustic startle response- including prepulse
inhibition and habituation- with behavioral and pharmacological characteristics similar to those in mammals. We
previously conducted the first forward genetic screen in vertebrates to isolate mutants defective in startle
modulation, and identified 14 mutants with defects in habituation behavior. None of these 14 mutants exhibit
morphological defects or overt defects in startle performance. Importantly, five of the six mutants we cloned so
far encode genes previously not implicated in vertebrate habituation. Here we propose to build on our success
in using a molecular genetics, phenotype based strategy to decipher the molecular and circuits mechanisms that
drive vertebrate habituation behavior. Specifically, rather than focusing on a single habituation gene, our strategy
is to continue to use whole genome sequencing to clone six additional mutants from our screen. Combined with
the six mutants we have already cloned, this provides an unparalleled toolbox critical to attain a comprehensive
model of the molecular-genetic and circuit mechanisms underlying habituation. Simultaneously, we focus on
select genes as entry points to further link genetic mutants to behavioral phenotypes and to decipher the
molecular and circuit mechanisms that regulate behavior. The experiments in this proposal will: (1) use a
molecular genetic approach including transgenic behavioral rescue to identify the neuronal populations in which
three genes critical for habituation function; (2) to use molecular and pharmacogenetic approaches in conjunction
with a behavioral assay to determine the signaling pathways through which the adaptor protein-2 sigma subunit
(AP2s1) critical for receptor endocytosis and the huntingtin interacting gene hip14 promote habituation; and 3)
to use an established whole genome sequencing/bioinformatics pipeline to identify the causative gene mutations
for six additional habituation mutants isolated from our genetic screen, generate CRISPR/Cas9 alleles to confirm
their identity and determine their expression in the brain. Combined this will provide both breadth and depth both
at the molecular and at the circuit level critical to comprehensively address fundamental molecular genetic
questions in vertebrate startle modulation, also relevant to human disease conditions.
摘要
神经系统的一个显著特征是它能够在特定的环境中调整刻板的行为反应
依赖的态度。在脊椎动物中,突然而强烈的声音刺激会引起进化上保守的惊吓。
回应。虽然声学惊吓反应的执行是非常刻板的,但响应概率是
以上下文相关的方式进行调制。例如,反复呈现令人震惊的刺激
抑制行为反应,代表一种简单的学习形式,称为习惯化。在人类身上,
惊吓行为的调节在几种神经精神障碍中受到损害,包括注意力缺陷-
多动症和自闭症谱系障碍。尽管它很重要,但分子机制
潜在的惊吓调节机制还没有被很好地理解。斑马鱼表现出显著的行为可塑性,我们
先前已经表明,幼虫表现出声学惊吓反应的调制--包括预脉冲
抑制和习惯化--具有与哺乳动物相似的行为和药理学特征。我们
之前在脊椎动物中进行了第一次正向基因筛查,以分离出在惊吓中有缺陷的突变
并鉴定出14个习服行为存在缺陷的突变体。这14个突变体都没有表现出
惊吓表演中的形态缺陷或明显缺陷。重要的是,我们克隆的六个突变体中有五个
FAR编码以前与脊椎动物习惯化无关的基因。在这里,我们建议在我们成功的基础上再接再厉
在使用分子遗传学、基于表型的策略来破译分子和电路机制时,
驱使脊椎动物习服行为。具体地说,我们的策略不是专注于单一的习惯基因,而是
是继续使用全基因组测序从我们的筛查中克隆另外六个突变体。与
我们已经克隆了六个突变体,这提供了一个无与伦比的工具箱,对于实现全面的
习惯化背后的分子遗传和回路机制的模型。同时,我们专注于
选择基因作为切入点,进一步将遗传突变与行为表型联系起来,并破译
调节行为的分子和电路机制。本提案中的实验将:(1)使用
分子遗传学方法,包括转基因行为拯救,以识别其中的神经元群体
对习服功能至关重要的三个基因;(2)结合使用分子和药物遗传学方法
通过行为测试来确定适配器蛋白-2西格玛亚单位通过的信号通路
(AP2s1)受体内吞和亨廷顿蛋白相互作用基因hi14促进习服;以及3)
使用已建立的全基因组测序/生物信息学管道来识别致病基因突变
对于从我们的遗传筛选中分离到的另外六个习惯性突变体,生成CRISPR/Cas9等位基因以确认
他们的身份和决定他们在大脑中的表达。结合起来,这将既提供广度又提供深度
在分子和电路水平上对全面解决基本分子遗传学至关重要
脊椎动物的问题令人震惊,也与人类的疾病状况有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Granato其他文献
Michael Granato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Granato', 18)}}的其他基金
Cellular and molecular analysis of startle modulation
惊吓调节的细胞和分子分析
- 批准号:
10553665 - 财政年份:2021
- 资助金额:
$ 52.89万 - 项目类别:
Cellular and molecular mechanisms of peripheral nerve regeneration
周围神经再生的细胞和分子机制
- 批准号:
9293867 - 财政年份:2016
- 资助金额:
$ 52.89万 - 项目类别:
Molecular genetic mechanisms of spontaneous spinal cord regeneration
脊髓自发再生的分子遗传学机制
- 批准号:
10681837 - 财政年份:2016
- 资助金额:
$ 52.89万 - 项目类别:
Cellular and molecular analysis of spontaneous optic nerve regeneration
自发视神经再生的细胞和分子分析
- 批准号:
10450086 - 财政年份:2014
- 资助金额:
$ 52.89万 - 项目类别:
Molecular identification of genes critical for vertebrate startle modulation
对脊椎动物惊吓调节至关重要的基因的分子鉴定
- 批准号:
8678297 - 财政年份:2014
- 资助金额:
$ 52.89万 - 项目类别:














{{item.name}}会员




