Molecular genetic mechanisms of spontaneous spinal cord regeneration
脊髓自发再生的分子遗传学机制
基本信息
- 批准号:10681837
- 负责人:
- 金额:$ 47.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAnimal ModelAnimalsAstrocytesAxonAxotomyCadherinsCellsCentral Nervous SystemComplementDataDevelopmentDystroglycanEGF geneEnvironmentFoundationsFunctional RegenerationGene SilencingGenesGeneticGrowthHourInjuryKnowledgeLasersLeftLengthLibrariesMammalsMasksModelingMolecularMolecular GeneticsMolecular TargetNatural regenerationNerve RegenerationNeurogliaNeuronsOligodendrogliaPathway interactionsPhenotypePlayProcessRecoveryReportingResolutionRoleSiblingsSignal PathwaySignal TransductionSiteSpinal CordSpinal cord injurySynapsesSystemTestingTimeTransgenic OrganismsVertebratesZebrafishaxon regenerationcandidate selectioncell regenerationcell typecentral nervous system injurycompound 30experimental studyin vivoin vivo regenerationlive cell imagingmRNA Expressionmutantneurodevelopmentoptic nerve regenerationperipheral nerve regenerationplanar cell polarityprematurereceptorregenerativeregenerative growthsmall moleculespinal cord regenerationtooltreatment strategy
项目摘要
ABSTRACT
In mammals, spinal cord injury frequently leads to irreversible damage mainly due to the very limited capacity of
injured central nervous system (CNS) axons to reconnect with their preinjury targets. Functional regeneration
requires injured CNS axons to extend over long distances and reconnect with their original synaptic targets,
however even in animal models current treatment strategies produce only modest levels of recovery. Despite
enormous progress over the past decades, our knowledge and understanding of the fundamental molecular
pathways and mechanisms that contribute to the process of spinal cord regeneration has left many fundamental
questions unanswered. For example, are growth rates of regenerating axons uniform, are they preprogramed
and invariable or are they modulated as they extend towards and into the injury site? And if so, what mechanisms
and genes regulate and tune regenerating growth rates? In contrast to mammals, non-mammalian vertebrates
including zebrafish have retained a remarkable capacity for spontaneous CNS regeneration. We have developed
a laser-based axotomy approach to study spinal cord regeneration in larval zebrafish at single axon resolution
in otherwise intact animals. From a candidate screen we identified the Cadherin EGF LAG receptor celsr3 to
play a critical role in CNS regeneration. Our preliminary data reveal that in wild type animals regenerating M-ell
axons switch to 3 fold higher growth rates once they cross the injury site. Celsr3 mutant M-cell axons respond
to injury and grow across the injury site at growth rates indistinguishable from wildtype siblings, but then fail to
increase their growth rates and frequently stall prematurely at about 25% of pre-injury length. Thus, our
preliminary results identified a genetic entry point into the fundamental yet understudied question of whether and
if so through which molecular mechanisms regenerating spinal cord axons regulate their growth rates along their
regenerative path as their environment changes. Finally, we find that Celsr3 is also required for optic nerve
regeneration but is dispensable for peripheral nerve regeneration, strongly suggesting that Celsr3 plays a
selective role in CNS axon regeneration. The experiments in this proposal will (1) determine cellular and
molecular mechanism by which Celsr3 growth rates selectively of regenerating CNS axons; (2) identify the
molecular signaling cascade through which celsr3 promotes regeneration; and (3) Identify additional entry points
into pathways that promote spontaneous spinal cord regeneration. Combined, our results are expected to make
significant contributions to fundamental mechanisms that promote spontaneous spinal cord regeneration in vivo,
and lay the foundation for a comprehensive analysis of spontaneous spinal cord regeneration. Although
spontaneous spinal cord regeneration is largely absent in mammals, mechanisms of spontaneous spinal cord
regeneration might be masked and thus undetectable by the presence and dominance of growth inhibitory
mechanism. Our studies therefore complement studies in mammalian models that focus predominantly on
strategies to overcome growth inhibition.
摘要
在哺乳动物中,脊髓损伤经常导致不可逆的损伤,主要是由于脊髓损伤的能力非常有限。
损伤的中枢神经系统(CNS)轴突与其损伤前的靶点重新连接。功能性再生
需要受损的CNS轴突长距离延伸并与其原始突触靶点重新连接,
然而,即使在动物模型中,目前的治疗策略也仅产生适度水平的恢复。尽管
在过去的几十年里,我们对基本分子的认识和理解取得了巨大的进展,
促进脊髓再生过程的途径和机制留下了许多基本的
没有答案的问题例如,再生轴突的生长速度是否一致,它们是否预先编程
或者当它们向损伤部位延伸并进入损伤部位时,它们是被调节的?如果是的话,
基因调节和调整再生生长率?与哺乳动物相比,非哺乳类脊椎动物
包括斑马鱼在内的动物都保留了非凡的自发中枢神经系统再生能力。我们已经开发
激光切断法研究斑马鱼幼鱼脊髓再生的单轴突分辨率
在其他方面完好的动物身上。从候选筛选中,我们鉴定了钙粘蛋白EGF LAG受体celsr 3,
在中枢神经系统再生中起着关键作用。我们的初步数据显示,在野生型动物中,
一旦轴突穿过损伤部位,它们的生长速度就会提高3倍。Celsr 3突变体M细胞轴突响应
损伤并以与野生型同胞无区别的生长速率在损伤部位生长,但随后未能
增加它们的生长速率,并且经常在损伤前长度的约25%处过早地停止。所以我们
初步结果确定了一个基因切入点,进入了一个基本但尚未充分研究的问题,
如果是这样的话,再生脊髓轴突的分子机制是通过沿着它们的
随着环境的变化而变化。最后,我们发现Celsr 3也是视神经所必需的。
但对周围神经再生的影响不大,这强烈表明Celsr 3在神经再生中起着重要作用。
在CNS轴突再生中的选择性作用。本提案中的实验将(1)确定细胞和
Celsr 3选择性生长CNS轴突的分子机制;(2)鉴定
celsr 3通过其促进再生的分子信号级联;和(3)识别额外的进入点
进入促进脊髓自发再生的途径。综合起来,我们的结果有望使
对促进体内自发脊髓再生的基本机制的重大贡献,
为全面分析脊髓自发性再生奠定基础。虽然
自发性脊髓再生在哺乳动物中基本上不存在,自发性脊髓再生的机制
再生可能被生长抑制剂的存在和优势所掩盖,因此无法检测到。
机制因此,我们的研究补充了哺乳动物模型中的研究,这些研究主要集中在
克服生长抑制的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Granato其他文献
Michael Granato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Granato', 18)}}的其他基金
Cellular and molecular analysis of startle modulation
惊吓调节的细胞和分子分析
- 批准号:
10553665 - 财政年份:2021
- 资助金额:
$ 47.26万 - 项目类别:
Cellular and molecular analysis of startle modulation
惊吓调节的细胞和分子分析
- 批准号:
10352379 - 财政年份:2021
- 资助金额:
$ 47.26万 - 项目类别:
Cellular and molecular mechanisms of peripheral nerve regeneration
周围神经再生的细胞和分子机制
- 批准号:
9293867 - 财政年份:2016
- 资助金额:
$ 47.26万 - 项目类别:
Cellular and molecular analysis of spontaneous optic nerve regeneration
自发视神经再生的细胞和分子分析
- 批准号:
10450086 - 财政年份:2014
- 资助金额:
$ 47.26万 - 项目类别:
The role of pregnancy associated plasma protein-a in habituation learning
妊娠相关血浆蛋白-a在习惯化学习中的作用
- 批准号:
8619242 - 财政年份:2014
- 资助金额:
$ 47.26万 - 项目类别:
Molecular identification of genes critical for vertebrate startle modulation
对脊椎动物惊吓调节至关重要的基因的分子鉴定
- 批准号:
8678297 - 财政年份:2014
- 资助金额:
$ 47.26万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists