Incorporating Learning Effects into Medical Device Active Safety Surveillance Methods
将学习效果纳入医疗器械主动安全监测方法
基本信息
- 批准号:10352373
- 负责人:
- 金额:$ 75.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcuteAddressAdverse eventAlgorithm DesignAlgorithmsBlindedBlood VesselsCardiovascular systemCaringCharacteristicsChronicClinicalClinical DataComplexDataData AggregationData AnalyticsData SetDetectionDevelopmentDevice DesignsDevice SafetyDevicesEarly DiagnosisElementsEnvironmentEtiologyEvaluationEventFeedbackGenerationsImplantInjectionsInjuryInstitutionInvestigationKnowledgeLeadLearningLiteratureManufacturer NameMedical DeviceMedical Device DesignsMedical Device SafetyMethodologyMethodsOutcomePatient-Focused OutcomesPatientsPerformancePhysiciansProcessProviderPublic HealthPublishingRegistriesReportingRiskSafetySignal TransductionSpecific qualifier valueStatistical ModelsStructureSurveillance MethodsTimeTrainingUnited StatesValidationVariantadverse outcomealgorithm developmentcardiovascular risk factorclinical heterogeneitydesignexpectationexperiencehigh riskimplantable deviceimprovedmachine learning modelnovelopen sourcepatient populationpost-marketprospectivesafety outcomessimulationsurveillance strategysurveillance studysystems researchtool
项目摘要
Implantable medical devices have revolutionized contemporary cardiovascular care, and
are used in a wide spectrum of acute and chronic cardiovascular conditions. However, medical
device design fault or incorrect use may lead to significant risk of patient injury and represents
an important preventable public health risk in the United States. To help identify device-related
safety issues, a strategy of active, prospective, post-market safety surveillance has been
recommended by the FDA, and evaluated methodologically. This type of surveillance offers
significant advantages over traditional adverse event reporting strategies. However, all such
approaches are challenged by the need to incorporate learning effects into expectations
regarding safety. These learning impacts been repeatedly shown to have dramatic impacts on
outcomes during early device experience. Quantifying learning effects on the outcomes
associated with high-risk cardiovascular devices will improve our understanding of intrinsic
device performance, thereby identifying patient populations best treated with such devices while
simultaneously providing necessary feedback to device manufacturers to support iterative
improvement in device design. Separately, understanding the impacts of learning may identify
opportunities for targeted training as well as help to tease apart institutional and operator
characteristics that may accelerate the achievement of optimal outcomes in the use of the
specific cardiovascular device.
This proposal seeks to extend the previously validated, open-source, active, prospective
device safety surveillance tool, by developing and validating robust learning curve (LC)
detection and quantification algorithms, designed to simultaneously account for the effects at
the operator and institutional levels. We propose a “blinded” development strategy, in which
one team will generate robust synthetic clinical data simulator with LC impacts, and the other
team develops and applies LC detection and quantification algorithms, without knowledge of the
underlying relationships, determine performance and accuracy through sequential refinement
and validation steps. We propose to formally validate the optimized LC tools in real-world data
through re-analysis of previously published LC effects on transcatheter valves and vascular
closure devices using national cardiovascular registries. In addition, the LC tools will be
incorporated into two active, prospective device safety surveillance studies of novel implantable
cardiovascular devices using large clinical registries.
植入式医疗设备已经彻底改变了当代心血管护理,并且
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL E. MATHENY其他文献
MICHAEL E. MATHENY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL E. MATHENY', 18)}}的其他基金
Evaluating a Prescribing Feedback System for Acute Care Providers
评估急性护理提供者的处方反馈系统
- 批准号:
10515631 - 财政年份:2020
- 资助金额:
$ 75.45万 - 项目类别:
Incorporating Learning Effects into Medical Device Active Safety Surveillance Methods
将学习效果纳入医疗器械主动安全监测方法
- 批准号:
10570892 - 财政年份:2020
- 资助金额:
$ 75.45万 - 项目类别:
Incorporating Learning Effects into Medical Device Active Safety Surveillance Methods
将学习效果纳入医疗器械主动安全监测方法
- 批准号:
10088471 - 财政年份:2020
- 资助金额:
$ 75.45万 - 项目类别:
Evaluating a Prescribing Feedback System for Acute Care Providers
评估急性护理提供者的处方反馈系统
- 批准号:
10237198 - 财政年份:2020
- 资助金额:
$ 75.45万 - 项目类别:
Advancing the Phenotyping of Acute Kidney Injury for the Million Veterans Program
为百万退伍军人计划推进急性肾损伤的表型分析
- 批准号:
9939306 - 财政年份:2019
- 资助金额:
$ 75.45万 - 项目类别:
National Surveillance of Acute Kidney Injury Following Cardiac Catheterization
心导管插入术后急性肾损伤的全国监测
- 批准号:
8277653 - 财政年份:2012
- 资助金额:
$ 75.45万 - 项目类别:
National Surveillance of Acute Kidney Injury Following Cardiac Catheterization
心导管插入术后急性肾损伤的全国监测
- 批准号:
8597962 - 财政年份:2012
- 资助金额:
$ 75.45万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 75.45万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 75.45万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 75.45万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 75.45万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 75.45万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 75.45万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 75.45万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 75.45万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 75.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 75.45万 - 项目类别:
Standard Grant