Incorporating Learning Effects into Medical Device Active Safety Surveillance Methods

将学习效果纳入医疗器械主动安全监测方法

基本信息

项目摘要

Implantable medical devices have revolutionized contemporary cardiovascular care, and are used in a wide spectrum of acute and chronic cardiovascular conditions. However, medical device design fault or incorrect use may lead to significant risk of patient injury and represents an important preventable public health risk in the United States. To help identify device-related safety issues, a strategy of active, prospective, post-market safety surveillance has been recommended by the FDA, and evaluated methodologically. This type of surveillance offers significant advantages over traditional adverse event reporting strategies. However, all such approaches are challenged by the need to incorporate learning effects into expectations regarding safety. These learning impacts been repeatedly shown to have dramatic impacts on outcomes during early device experience. Quantifying learning effects on the outcomes associated with high-risk cardiovascular devices will improve our understanding of intrinsic device performance, thereby identifying patient populations best treated with such devices while simultaneously providing necessary feedback to device manufacturers to support iterative improvement in device design. Separately, understanding the impacts of learning may identify opportunities for targeted training as well as help to tease apart institutional and operator characteristics that may accelerate the achievement of optimal outcomes in the use of the specific cardiovascular device. This proposal seeks to extend the previously validated, open-source, active, prospective device safety surveillance tool, by developing and validating robust learning curve (LC) detection and quantification algorithms, designed to simultaneously account for the effects at the operator and institutional levels. We propose a “blinded” development strategy, in which one team will generate robust synthetic clinical data simulator with LC impacts, and the other team develops and applies LC detection and quantification algorithms, without knowledge of the underlying relationships, determine performance and accuracy through sequential refinement and validation steps. We propose to formally validate the optimized LC tools in real-world data through re-analysis of previously published LC effects on transcatheter valves and vascular closure devices using national cardiovascular registries. In addition, the LC tools will be incorporated into two active, prospective device safety surveillance studies of novel implantable cardiovascular devices using large clinical registries.
植入式医疗设备彻底改变了当代心血管护理, 用于广泛的急性和慢性心血管疾病。但医疗 器械设计错误或使用不当可能导致患者受伤的重大风险,并代表 这是美国一个重要的可预防的公共卫生风险。帮助识别与器械相关的 安全性问题,积极的、前瞻性的上市后安全性监测策略已被 由FDA推荐,并在方法学上进行评估。这种类型的监视提供了 与传统的不良事件报告策略相比具有显著优势。然而,所有这些 由于需要将学习效果纳入期望, 关于安全。这些学习的影响一再被证明对 早期器械使用期间的结局。量化学习对结果的影响 与高风险心血管设备相关的研究将提高我们对内在 器械性能,从而确定使用此类器械进行最佳治疗的患者人群, 同时向设备制造商提供必要的反馈, 设备设计改进。另外,了解学习的影响可以确定 提供有针对性的培训机会,并帮助区分机构和运营商 可能加速实现最佳结果的特性, 特定心血管装置。 该提案旨在扩展先前验证的,开源的,积极的,前瞻性的 器械安全监督工具,通过开发和验证稳健的学习曲线(LC) 检测和量化算法,旨在同时考虑在 运营商和机构层面。我们提出了一个“盲目”的发展战略, 一个团队将生成具有LC影响的强大合成临床数据模拟器,另一个团队将生成具有LC影响的强大合成临床数据模拟器, 团队开发和应用LC检测和定量算法,而不了解 基础关系,通过顺序细化确定性能和准确性 和验证步骤。我们建议在真实数据中正式验证优化的LC工具 通过重新分析先前发表的LC对经导管瓣膜和血管的影响, 使用国家心血管登记系统的闭合器械。此外,LC工具将 纳入两项新型植入式植入物的主动、前瞻性器械安全性监测研究 使用大型临床注册中心的心血管器械。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL E. MATHENY其他文献

MICHAEL E. MATHENY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL E. MATHENY', 18)}}的其他基金

Evaluating a Prescribing Feedback System for Acute Care Providers
评估急性护理提供者的处方反馈系统
  • 批准号:
    10515631
  • 财政年份:
    2020
  • 资助金额:
    $ 76.9万
  • 项目类别:
Incorporating Learning Effects into Medical Device Active Safety Surveillance Methods
将学习效果纳入医疗器械主动安全监测方法
  • 批准号:
    10570892
  • 财政年份:
    2020
  • 资助金额:
    $ 76.9万
  • 项目类别:
Evaluating a Prescribing Feedback System for Acute Care Providers
评估急性护理提供者的处方反馈系统
  • 批准号:
    10237198
  • 财政年份:
    2020
  • 资助金额:
    $ 76.9万
  • 项目类别:
Incorporating Learning Effects into Medical Device Active Safety Surveillance Methods
将学习效果纳入医疗器械主动安全监测方法
  • 批准号:
    10352373
  • 财政年份:
    2020
  • 资助金额:
    $ 76.9万
  • 项目类别:
Advancing the Phenotyping of Acute Kidney Injury for the Million Veterans Program
为百万退伍军人计划推进急性肾损伤的表型分析
  • 批准号:
    9939306
  • 财政年份:
    2019
  • 资助金额:
    $ 76.9万
  • 项目类别:
National Surveillance of Acute Kidney Injury Following Cardiac Catheterization
心导管插入术后急性肾损伤的全国监测
  • 批准号:
    8597962
  • 财政年份:
    2012
  • 资助金额:
    $ 76.9万
  • 项目类别:
National Surveillance of Acute Kidney Injury Following Cardiac Catheterization
心导管插入术后急性肾损伤的全国监测
  • 批准号:
    8277653
  • 财政年份:
    2012
  • 资助金额:
    $ 76.9万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.9万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.9万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 76.9万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.9万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 76.9万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.9万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.9万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.9万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 76.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 76.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了