Detecting pleiotropic effects through integration of omics data
通过组学数据整合检测多效性效应
基本信息
- 批准号:10350616
- 负责人:
- 金额:$ 67.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:African AmericanAfrican ancestryAgeAsianAsian ancestryAsthmaBiolectric ImpedanceBiologicalBody mass indexCommunitiesComplexComputer softwareDataDetectionDiseaseDocumentationDrug TargetingEnsureEquationEtiologyGene ExpressionGenesGenetic Predisposition to DiseaseGenetic RiskGenetic VariationGenotype-Tissue Expression ProjectGoalsHeritabilityHigh Density LipoproteinsHispanicHispanic ancestryIndividualLeadLipidsLogistic RegressionsLow-Density LipoproteinsMediatingMethodsModelingNational Heart, Lung, and Blood InstituteNon-Insulin-Dependent Diabetes MellitusObesityPhenotypePlayPopulationPublic HealthReportingRoleSample SizeSamplingSiteSmokingStatistical MethodsStudy SubjectTestingTissuesTrans-Omics for Precision MedicineTriglyceridesValidationVariantWaist-Hip Ratiobasebiobankblood lipiddesigndifferential expressionexome sequencinggenetic architecturegenome-wideimprovedinsightlarge datasetslipoprotein triglyceridelow density lipoprotein triglyceridemRNA Differential Displaysparallel processingphenotypic datapleiotropismpopulation basedprogramsrare variantsexsoftware developmenttherapy developmenttraitwhole genome
项目摘要
Vast amounts of whole genome sequence and imputed sequence data are being generated for
many complex traits and diseases. Most studies, e.g. UK10K, National Heart, Lung and Blood
Institute-Exome Sequencing Project, have concentrated on detecting main effects. Pleiotropy,
although an important phenomenon in genetic etiology, has not been adequately studied and
methods are limited to detect pleiotropy for rare and imputed variants. Additionally, although
there have been reports of pleiotropic loci it has been difficult to elucidate if these effects
underlie disease etiology or are false positives. We will tackle this problem using a multi-prong
approach that utilizes pleiotropic association testing, estimating tissue-specific disease
heritability and detecting tissue-specific pleiotropy. To meet the goals of this study we will use
omics data, implement previously developed methods and extend existing methods to analyze
imputed and rare variants. To ensure discoveries for a large variety of complex diseases and
traits e.g. asthma, type 2 diabetes, adiposity, and lipids, and to demonstrate that these methods
are an effective approach to study pleiotropy, data from the UK Biobank (500,000 study
subjects) will be analyzed. A split sample design will be employed in which 350,000 subjects
(Release 2) for Discovery and 150,000 subjects (Release 1) for Replication. Secondary
replication and fine mapping will be performed using TOPMed data which will have >150,000
individuals with whole genome sequence data with 26% of these individuals being African-
American, 10% Hispanic, and 7% Asian. All methods will be implemented in our SEQSpark
software which uses parallel processing to make it feasible to analyze hundreds of thousands of
samples efficiently and quickly. Not only is this study expected to improve our understanding of
the genetic etiology for complex diseases and traits, but it also has high public health
significance; understanding pleiotropic effects will improve our ability to estimate genetic risk
and provide insight into drug targets for the development of treatments of multiple diseases due
to shared genetic architecture. The framework and software developed in this proposal will be
available to the scientific community to apply to other large datasets for the identification of
pleiotropic loci beyond those phenotypes described here.
正在生成大量的全基因组序列和估算序列数据,
许多复杂的特征和疾病。大多数研究,例如UK 10 K,国家心肺和血液
研究所-外显子组测序项目,集中在检测主效应。多效性,
尽管这是遗传病因学中的一个重要现象,但尚未得到充分研究,
方法仅限于检测罕见和插补变异的多效性。此外,虽然
已经有关于多效性基因座的报道,但是很难阐明这些效应是否
是疾病病因学的基础还是假阳性。我们将采用多管齐下的方法解决这个问题。
一种利用多效性关联检验的方法,估计组织特异性疾病
遗传性和检测组织特异性多效性。为了实现本研究的目标,我们将使用
组学数据,实现以前开发的方法,并扩展现有的方法来分析
插补和罕见变异。确保发现各种复杂疾病,
特征,例如哮喘、2型糖尿病、肥胖和脂质,并证明这些方法
是研究多效性的有效方法,来自英国生物银行的数据(50万人研究
将进行分析。将采用分裂样本设计,其中350,000名受试者
(第2版)用于Discovery,150,000名受试者(第1版)用于Replication。二次
复制和精细映射将使用TOPM数据执行,这些数据将具有> 150,000
有全基因组序列数据的人,其中26%是非洲人,
美国人,10%西班牙裔,7%亚洲人。所有方法都将在我们的SEQSpark中实现
软件使用并行处理,使其能够分析数十万个
快速有效地采样。这项研究不仅有望提高我们对
复杂疾病和特征的遗传病因学,但它也具有很高的公共卫生性
意义;了解多效性效应将提高我们估计遗传风险的能力
并为开发多种疾病的治疗方法提供药物靶点,
共同的基因结构。本提案中开发的框架和软件将
可供科学界应用于其他大型数据集,
多效性基因座超出这里描述的那些表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew DeWan其他文献
Andrew DeWan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew DeWan', 18)}}的其他基金
Detecting pleiotropic effects through integration of omics data
通过组学数据整合检测多效性效应
- 批准号:
9889994 - 财政年份:2019
- 资助金额:
$ 67.53万 - 项目类别:
Detecting pleiotropic effects through integration of omics data
通过组学数据整合检测多效性效应
- 批准号:
10117042 - 财政年份:2019
- 资助金额:
$ 67.53万 - 项目类别:
Identification of microRNA variants associated with acute lymphoblastic leukemia
与急性淋巴细胞白血病相关的 microRNA 变异的鉴定
- 批准号:
9378958 - 财政年份:2017
- 资助金额:
$ 67.53万 - 项目类别:
Family-specific genetic variants contributing to asthma susceptibility
家族特异性遗传变异导致哮喘易感性
- 批准号:
8605552 - 财政年份:2013
- 资助金额:
$ 67.53万 - 项目类别:
Family-specific genetic variants contributing to asthma susceptibility
家族特异性遗传变异导致哮喘易感性
- 批准号:
8857695 - 财政年份:2013
- 资助金额:
$ 67.53万 - 项目类别:
Family-specific genetic variants contributing to asthma susceptibility
家族特异性遗传变异导致哮喘易感性
- 批准号:
8777974 - 财政年份:2013
- 资助金额:
$ 67.53万 - 项目类别:
Family-specific genetic variants contributing to asthma susceptibility
家族特异性遗传变异导致哮喘易感性
- 批准号:
8417850 - 财政年份:2013
- 资助金额:
$ 67.53万 - 项目类别:
相似海外基金
Differences in Tumor Biology of Multiple Myeloma in Association with African Ancestry
与非洲血统相关的多发性骨髓瘤肿瘤生物学差异
- 批准号:
10656009 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Identifying placental injury pathways in women of African ancestry with severe preeclampsia
确定患有严重先兆子痫的非洲血统女性的胎盘损伤途径
- 批准号:
10742342 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Community to Molecular Approaches in Early Screening and Diagnosis to Promote Equitable Outcomes Through the Continuum of Care in Cancer Among Populations of African Ancestry
社区采用分子方法进行早期筛查和诊断,通过对非洲裔人群癌症的持续护理来促进公平结果
- 批准号:
10754038 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Genomics of Renal Cancer in Patients of African Ancestry
非洲血统患者肾癌的基因组学
- 批准号:
10648882 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Improving Genetic Diagnosis for African Ancestry Populations
改善非洲血统人群的基因诊断
- 批准号:
10736833 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Genetics of PTSD in African Ancestry Populations: Enhancing discovery by addressing inequality
非洲血统人群 PTSD 的遗传学:通过解决不平等问题加强发现
- 批准号:
10750547 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Multi-omic Risk Prediction of Chronic Obstructive Pulmonary Disease in European- and African-Ancestry Populations
欧洲和非洲血统人群慢性阻塞性肺疾病的多组学风险预测
- 批准号:
10445739 - 财政年份:2022
- 资助金额:
$ 67.53万 - 项目类别:
Microfluidic Droplet Organoids to Decipher the Tumor Heterogeneity in CRC of African Ancestry
微流控液滴类器官破译非洲血统结直肠癌肿瘤异质性
- 批准号:
10355977 - 财政年份:2022
- 资助金额:
$ 67.53万 - 项目类别:
Multi-omic Risk Prediction of Chronic Obstructive Pulmonary Disease in European- and African-Ancestry Populations_Supplement
欧洲和非洲血统人群慢性阻塞性肺疾病的多组学风险预测_补充
- 批准号:
10772527 - 财政年份:2022
- 资助金额:
$ 67.53万 - 项目类别:
Understanding the contribution of genotype-by-lifestyle interactions to cardiometabolic risk in individuals of east African ancestry
了解基因型与生活方式的相互作用对东非血统个体心脏代谢风险的影响
- 批准号:
10537570 - 财政年份:2022
- 资助金额:
$ 67.53万 - 项目类别: