Using Common Fund datasets for xenobiotic localization
使用共同基金数据集进行外源性本地化
基本信息
- 批准号:10357502
- 负责人:
- 金额:$ 30.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2023-09-21
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaCell NucleusCellsChemotherapy-Oncologic ProcedureClinicalCodeCommon Data ElementConsensusDataData ElementData SetDescriptorDiseaseDocumentationDoseDrug Delivery SystemsDrug TargetingDrug resistanceDrug toxicityEventExposure toFailureFingerprintFluorescenceFunctional disorderFundingFunding OpportunitiesGenomeGlyburideGoalsHumanIn VitroKnowledgeLabelLeadLibrariesLigandsLocationLysosomesMachine LearningMediatingMicroscopicMicrotubulesMitochondriaModelingMulti-Drug ResistanceNetwork-basedOrganOutcomePaclitaxelPharmaceutical PreparationsPharmacologyPilot ProjectsPlayProcessProteinsPublic HealthResearchRiskRoleScientistSirolimusSiteSpecificityTechniquesTechnologyTestingTherapeuticTissuesToxic effectValidationWorkXenobioticsbasechemotherapycombinatorialcomputerized toolsdesigndosagedrug candidatedrug developmentdrug discoverydrug dispositionimprovedin vivometabolomicsneglectnovelopen sourcepharmacophorepredictive modelingprogramsradiotracerrefractory cancerscaffoldside effectsmall moleculesuccesstherapeutic effectivenesstooltool development
项目摘要
Project Summary
Subcellular localization, such as the nucleus lysosomes, and mitochondria, has tremendous potential to
enhance the effectiveness of the therapeutic molecules rather than random distribution throughout the cell.
With improved subcellular localization and enhanced concentration, a specific molecule can be more
efficacious as well as less toxic which is usually a concern of random distribution and nonspecific localization.
Therefore, understanding subcellular distribution and the mechanism for a specific molecule can further
modulate subcellular dysfunction mediated diseases. Xenobiotic localization at the subcellular level has a
profound effect on several processes. The overarching goal of the proposed work is to develop a novel
platform with computational tools for specific xenobiotic localization. The proposed work will take advantage of
three common fund datasets. In specific aim-1, we aim to develop a suite of machine learning (ML) models for
hierarchical levels of micro-compartmentation and 40 specific subcellular locations. These machine learning
models will be first built using three different types of features (fingerprints-based, pharmacophore-based, and
physicochemical descriptors-based). Then, they are fused using an advanced multilayer combinatorial fusion
algorithm to get the best consensus model. We will also perform the scaffold analysis to identify critical
scaffolds that play a role in accumulating molecules at specific subcellular locations. In specific aim-2, we will
conduct experimental validation of the predictions developed ML models. More specifically we will test 50
compounds for their subcellular location. In specific aim-3, we plan to build an open portal that incorporates
datasets, ML model, prediction server, and documentation. All the data and models generated from the project
are made available as open-source.
项目概要
亚细胞定位,例如核溶酶体和线粒体,具有巨大的潜力
增强治疗分子的有效性,而不是随机分布在整个细胞中。
随着亚细胞定位的改善和浓度的提高,特定分子可以更有效地发挥作用。
有效且毒性较小,这通常是随机分布和非特异性定位的问题。
因此,了解特定分子的亚细胞分布和机制可以进一步
调节亚细胞功能障碍介导的疾病。亚细胞水平的异生素定位具有
对多个过程产生深远的影响。拟议工作的总体目标是开发一种新颖的
具有用于特定外源定位的计算工具的平台。拟议的工作将利用
三个共同基金数据集。在具体目标 1 中,我们的目标是开发一套机器学习 (ML) 模型
微区室的层次结构和 40 个特定的亚细胞位置。这些机器学习
首先将使用三种不同类型的特征(基于指纹、基于药效团和
基于物理化学描述符)。然后,使用先进的多层组合融合将它们融合在一起
算法来获得最佳的共识模型。我们还将进行支架分析以确定关键的
在特定亚细胞位置积累分子中发挥作用的支架。在具体目标2中,我们将
对开发的 ML 模型的预测进行实验验证。更具体地说,我们将测试 50
化合物的亚细胞位置。在具体目标 3 中,我们计划建立一个开放门户,其中包含
数据集、ML 模型、预测服务器和文档。项目生成的所有数据和模型
作为开源提供。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Md Nurunnabi其他文献
Md Nurunnabi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 30.4万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 30.4万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 30.4万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 30.4万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 30.4万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 30.4万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 30.4万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 30.4万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 30.4万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 30.4万 - 项目类别:
Standard Grant