Studying the Laryngeal Mechanisms Underlying Dysphonia in Connected Speech
研究连语语音中发声困难的喉部机制
基本信息
- 批准号:10378024
- 负责人:
- 金额:$ 13.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAgeAreaAuditoryBehaviorBiomechanicsCategoriesCharacteristicsClinicalCommunicationCouplingDataData SetDevelopmentDiagnosisDysphoniaEndoscopesEvaluationFunctional disorderGoalsGoldHealthHumanImageKnowledgeLarynxLeadMachine LearningMeasurementMeasuresMethodologyMethodsMiningNational Institute on Deafness and Other Communication DisordersOperative Surgical ProceduresOutcomeOutcomes ResearchParalysedPatientsPersonsPhysicsPhysiologicalPreventionProductionProtocols documentationResearchSeriesSeveritiesSourceSpastic DysphoniasSpeechSpeedStatistical Data InterpretationStatistical ModelsStrategic PlanningSystemTechniquesTestingTherapeuticTimeTremorVisualVoiceVoice DisordersVoice DisturbancesVoice Qualitybaseclinical applicationclinical developmentclinical practiceclinically relevantcohortflexibilityimage processingimaging approachimprovedinnovationkinematicsmachine learning modelsextemporal measurementtime usetooltreatment strategyvibrationvocal cordvocalization
项目摘要
Project Summary/Abstract
This proposal aims to employ the recent advancement of coupling fiberoptic endoscopes with high-speed
videoendoscopy (HSV) systems to obtain HSV recordings during connected speech. The goal is to study vocal
mechanisms underlying dysphonia in patients with neurogenic voice disorders. The long-term goal of this line of
research is to create clinically applicable quantitative methods for functional measurement of vocal fold vibration
in connected speech using innovative laryngeal imaging, an approach that could advance clinical voice
assessment and treatment practice. In Aim 1, HSV-based measures of vocal fold kinematics will be developed
and the influence of these measures on voice audio-perceptual qualities in the patients will be determined. Image
processing techniques will be developed to extract such measures from the HSV data in connected speech. The
extracted measures will be given as inputs to the statistical models to determine the source of the differences
between the normal controls and the patients for different speech phonetic contexts and words. This aim provides
an unbiased HSV-based method to predict voice quality. Developing such HSV-based methodology for functional
laryngeal examination in connected speech can enhance clinical voice assessment. In addition, better
understanding the influence of phonetic context would lead to optimizing the protocols for functional voice
assessment through laryngeal imaging in connected speech. In Aim 2, machine learning approaches will be
employed to discover hidden physics and unknown laryngeal mechanisms of voice production in the dysphonic
patients. The findings of this project will help make necessary adjustments in biomechanical or physiological
characteristics of vocal folds to enhance voice quality in patients with neurogenic voice disorders. Therefore, the
outcome of this research will aid clinicians in properly selecting, and developing new treatment strategies
(therapeutic, medicinal, or surgical), which are based on the gained knowledge of laryngeal mechanisms of
dysphonia. The proposed research is in harmony with multiple priority areas of the NIDCD, described in the
2017-2021 Strategic Plan. Both aims support Priority 3 (improve methods of diagnosis, treatment, and
prevention) through developing objective HSV-based measures and predicting the voice quality. Comparing
laryngeal mechanisms in normal and disordered voices addresses Priority 1 (deepen our understanding of the
normal function of the systems of human communication). Both aims propose to study laryngeal mechanisms in
patients with neurogenic and functional voice disorders, which addresses Priority 2 (increase our knowledge
about conditions that alter or diminish communication and health).
项目概要/摘要
该提案旨在利用高速耦合光纤内窥镜的最新进展
视频内窥镜 (HSV) 系统可在连接语音期间获取 HSV 记录。目标是学习声乐
神经源性声音障碍患者发声困难的机制。这条线的长远目标
研究旨在创建临床适用的定量方法来测量声带振动的功能
使用创新的喉部成像进行互联语音,这是一种可以推进临床语音的方法
评估和治疗实践。在目标 1 中,将开发基于 HSV 的声带运动学测量方法
并将确定这些措施对患者语音音频感知质量的影响。图像
将开发处理技术来从互联语音的 HSV 数据中提取此类测量值。这
提取的测量值将作为统计模型的输入,以确定差异的来源
正常对照者和患者之间针对不同语音语境和单词的差异。这一目标提供了
一种基于 HSV 的无偏预测语音质量的方法。开发这种基于 HSV 的功能方法
连接语音的喉部检查可以增强临床语音评估。另外,更好的是
了解语音上下文的影响将有助于优化功能语音协议
通过连接语音中的喉部成像进行评估。在目标 2 中,机器学习方法将是
用于发现语音障碍中隐藏的物理和未知的发声机制
患者。该项目的研究结果将有助于对生物力学或生理学进行必要的调整
声带的特征,以提高神经源性声音障碍患者的声音质量。因此,
这项研究的结果将帮助临床医生正确选择和制定新的治疗策略
(治疗、药物或手术),其基于对喉部机制的了解
发声困难。拟议的研究与 NIDCD 的多个优先领域相一致,如
2017-2021 年战略计划。这两个目标都支持优先事项 3(改进诊断、治疗和治疗方法)
通过制定基于 HSV 的客观措施并预测语音质量来预防)。比较
正常和紊乱声音中的喉部机制解决了优先事项 1(加深我们对声音的理解)
人类交流系统的正常功能)。这两个目标都旨在研究喉部机制
患有神经源性和功能性声音障碍的患者,这解决了优先事项 2(增加我们的知识
关于改变或削弱沟通和健康的情况)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maryam Naghibolhosseini其他文献
Maryam Naghibolhosseini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maryam Naghibolhosseini', 18)}}的其他基金
Bayesian Data-Driven Subject-Specific Modeling of Voice Production
贝叶斯数据驱动的语音产生的特定主题建模
- 批准号:
10360108 - 财政年份:2022
- 资助金额:
$ 13.78万 - 项目类别:
Bayesian Data-Driven Subject-Specific Modeling of Voice Production
贝叶斯数据驱动的语音产生的特定主题建模
- 批准号:
10904247 - 财政年份:2022
- 资助金额:
$ 13.78万 - 项目类别:
Bayesian Data-Driven Subject-Specific Modeling of Voice Production
贝叶斯数据驱动的语音产生的特定主题建模
- 批准号:
10609493 - 财政年份:2022
- 资助金额:
$ 13.78万 - 项目类别:
Studying the Laryngeal Mechanisms Underlying Dysphonia in Connected Speech
研究连语语音中发声困难的喉部机制
- 批准号:
10608001 - 财政年份:2019
- 资助金额:
$ 13.78万 - 项目类别:
Studying the Laryngeal Mechanisms Underlying Dysphonia in Connected Speech
研究连语语音中发声困难的喉部机制
- 批准号:
9901502 - 财政年份:2019
- 资助金额:
$ 13.78万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Research Grant