Statistical Modeling of Alzheimer's Disease Progression Integrating Brain Imaging and -Omics Data

整合脑成像和组学数据的阿尔茨海默病进展统计模型

基本信息

  • 批准号:
    10359718
  • 负责人:
  • 金额:
    $ 65.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-27 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Understanding of the etiology of Alzheimer's Disease (AD) is complicated due to the existence of dysregulations at different biological scales, ranging from genetic mutations to structural and functional brain alterations. Most models for studying AD are primarily focused on unimodal analysis, but there is a lack of systematic approaches that can integrate data across multiple scales to study the longitudinal disease progression. For example, the molecular mechanisms of brain atrophy related to progression to AD is not well understood. Although the promise of integrative analysis across multiple scales is increasingly recognized, there has been limited progress in developing interpretable and systematic approaches due the fact that the neuroimaging and -omics features have unique patterns of dependence and it is not immediately clear how to combine these two modalities for modeling progression to AD. Another limitation is that most of the existing methods have focused on delineating biological causes for differences between disease specific phenotypes that does not account for heterogeneity and does not treat the disorder as a continuum, which is recommended as per current NIA guidelines. To address these critical challenges, we develop a suite of statistical methods for modeling disease progression in AD involving longitudinal neuroimaging (MRI) scans and cognitive scores, combined with baseline -omics features and demographic and clinical data. Our integrative longitudinal analysis addresses critical gaps in literature and generates more robust results that are generalizable to more inclusive populations and yields more power in detecting true signals. We use spatially distributed voxel-wise brain surface features derived from MRI scans that provides high resolution interpretations about the changes in brain shape associated with disease progression. We develop predictive models which treats AD as a continuum while integrating data across disease stages and multiple visits in a systematic manner that is able to account for heterogeneity between and within disease stages and provides interpretable insights into longitudinal neuroimaging and baseline -omics features that drive cognition. Our methods can be used for developing individualized prediction trajectories for disease progression, identify latent states that are prognostic for specific disease stages, and predict cognition at future visits that can be directly used for early detection of high-risk individuals. We will develop and train our models using longitudinal ADNI data involving several thousand individuals and validate our findings on an independent longitudinal B-SHARP dataset. The statistical tools and algorithms developed will be made widely available to the broader research community. To our knowledge, our project is one of the first to develop an integrative and interpretable statistical framework for studying the trajectory of disease progression in AD using longitudinal and heterogeneous biomarker data from multiple scales, which provides valuable computational tools for early detection in AD that is of tremendous clinical importance in delivering patent centric outcomes in precision medicine.
阿尔茨海默病(AD)的病因学的理解是复杂的,由于存在 不同生物尺度的失调,从基因突变到大脑结构和功能 改变。大多数研究AD的模型主要集中在单峰分析上,但缺乏 系统的方法,可以整合多个尺度的数据,以研究纵向疾病 进展例如,与AD进展相关的脑萎缩的分子机制尚不清楚, 明白虽然跨多个尺度的综合分析的前景越来越被认可, 在制定可解释和系统的方法方面进展有限, 神经影像学和组学特征具有独特的依赖性模式,目前还不清楚如何 联合收割机将这两种模式结合起来,用于模拟向AD的进展。另一个限制是,大多数现有的 方法集中于描述疾病特异性表型之间差异的生物学原因 这并不能解释异质性,也不能将疾病视为一个连续体,这是推荐的 根据目前的NIA指南。为了应对这些关键挑战,我们开发了一套统计方法 为了对AD中的疾病进展进行建模,包括纵向神经成像(MRI)扫描和认知评分, 结合基线组学特征、人口统计学和临床数据。我们的综合纵向 分析解决了文献中的关键差距,并产生了更可靠的结果,可推广到更多的领域。 包容性群体,并在检测真实信号方面产生更大的力量。我们使用空间分布的体素方式 从MRI扫描中获得的大脑表面特征提供了对变化的高分辨率解释, 与疾病进展相关的大脑形状。我们开发的预测模型将AD视为 同时以系统的方式整合疾病阶段和多次访视的数据, 解释疾病阶段之间和疾病阶段内的异质性,并为以下方面提供可解释的见解: 纵向神经影像学和基线组学特征驱动认知。我们的方法可用于 开发疾病进展的个性化预测轨迹,识别潜在状态, 预测特定疾病阶段的预后,并预测未来访视时的认知, 检测高危人群。我们将使用纵向ADNI数据开发和训练模型, 数千人,并验证了我们的研究结果在一个独立的纵向B-SHARP数据集。的 将向更广泛的研究界广泛提供所开发的统计工具和算法。到 根据我们的知识,我们的项目是第一个开发综合和可解释的统计框架的项目之一 使用纵向和异质生物标志物数据研究AD疾病进展的轨迹 这为AD的早期检测提供了有价值的计算工具, 在精准医疗中提供以专利为中心的成果方面具有巨大的临床重要性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi Long其他文献

Qi Long的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qi Long', 18)}}的其他基金

Bioinformatics Core
生物信息学核心
  • 批准号:
    10733235
  • 财政年份:
    2023
  • 资助金额:
    $ 65.33万
  • 项目类别:
Statistical Modeling of Alzheimer's Disease Progression Integrating Brain Imaging and -Omics Data
整合脑成像和组学数据的阿尔茨海默病进展统计模型
  • 批准号:
    10457208
  • 财政年份:
    2021
  • 资助金额:
    $ 65.33万
  • 项目类别:
Statistical Modeling of Alzheimer's Disease Progression Integrating Brain Imaging and -Omics Data
整合脑成像和组学数据的阿尔茨海默病进展统计模型
  • 批准号:
    10579286
  • 财政年份:
    2021
  • 资助金额:
    $ 65.33万
  • 项目类别:
Privacy-preserving methods and tools for handling missing data in distributed health data networks
用于处理分布式健康数据网络中丢失数据的隐私保护方法和工具
  • 批准号:
    9364071
  • 财政年份:
    2017
  • 资助金额:
    $ 65.33万
  • 项目类别:
A comparative analysis of human and canine iNKT cells for ACT
人和犬 iNKT 细胞 ACT 的比较分析
  • 批准号:
    10287095
  • 财政年份:
    2017
  • 资助金额:
    $ 65.33万
  • 项目类别:
Coordinating Center for Canine Immunotherapy Trials and Correlative Studies
犬免疫治疗试验及相关研究协调中心
  • 批准号:
    10255532
  • 财政年份:
    2017
  • 资助金额:
    $ 65.33万
  • 项目类别:
Coordinating Center for Canine Immunotherapy Trials and Correlative Studies
犬免疫治疗试验及相关研究协调中心
  • 批准号:
    10260668
  • 财政年份:
    2017
  • 资助金额:
    $ 65.33万
  • 项目类别:
Coordinating Center for Canine Immunotherapy Trials and Correlative Studies
犬免疫治疗试验及相关研究协调中心
  • 批准号:
    10247892
  • 财政年份:
    2017
  • 资助金额:
    $ 65.33万
  • 项目类别:
Statistical Methods for Causal Inference in Observational Studies
观察研究中因果推断的统计方法
  • 批准号:
    8870561
  • 财政年份:
    2015
  • 资助金额:
    $ 65.33万
  • 项目类别:
Evaluating Prediction Models for Cancer Endpoints Subject to Dependent Censoring
评估受相关审查影响的癌症终点预测模型
  • 批准号:
    8443616
  • 财政年份:
    2013
  • 资助金额:
    $ 65.33万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 65.33万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.33万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 65.33万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.33万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 65.33万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 65.33万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.33万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 65.33万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 65.33万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.33万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了