Vascular Growth and Regeneration
血管生长和再生
基本信息
- 批准号:10359709
- 负责人:
- 金额:$ 96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-07 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAgingAwardBiological ProcessBloodBlood VesselsCell CycleCell PolarityCellsCellular biologyChemical InjuryChronicChronic DiseaseDataEndothelial CellsEndotheliumGene Expression ProfileGeneticGoalsGrantGrowthHeterogeneityHourHumanImpairmentInflammationInjuryIntercellular JunctionsInterventionKnowledgeLengthMediatingMedicalMetabolismMolecularMusNational Heart, Lung, and Blood InstituteNatural regenerationOutcomePathway interactionsPhysiologicalProcessProliferatingResearch PersonnelSeriesSignal TransductionStentsStressTherapeutic InterventionTraumaTubeTunica IntimaWidthangiogenesiscell regenerationchromatin remodelingeffective therapyendothelial regenerationendothelial repairhealingin vivointercalationmonolayernew therapeutic targetpreventprogenitorregenerativerepairedresponserestenosistranslational impacttranslational potentialvascular bedwound
项目摘要
PROJECT DESCRIPTION / SUMMARY
Much of our collective knowledge on vascular growth has emerged from efforts to understand angiogenesis,
a process by which endothelial cells depart from pre-existent vessels to form new vascular beds.
Nonetheless, once formed, vascular tubes also expand in width, length, and are able to regenerate.
Regeneration is extremely important to the repair of endothelial damage imposed by stents and other
medical devises, as well as to mediate heal after physical/chemical trauma. However our understanding of
the cellular and molecular mechanisms that regulate endothelial growth and regeneration within the context
of a fully functional, blood perfused and pulsatile vessel are limited. Our preliminary data show that
expansion of the tunica intima in vivo occurs through intrinsic proliferation of intimal endothelial cells in a
polarized and organized manner. In fact, a subset of endothelial cells flanking a wound are robustly induced
to enter into the cell cycle as quickly as 12 hours following injury in a highly synchronized fashion. The
process is initiated by changes in cell-cell junctions that trigger molecular rewiring and impressive
physiological changes. Important outcomes of these responses include alterations in endothelial cell
polarity, induction of chromatin remodeling, adjustments in metabolism and a quick emergence of a
transcriptional signature that is unique to regenerative endothelium. This newly identified signature is finely
tuned by the timed release of stress signals that appear to act differentially in the subsets of endothelial
cells, revealing an intrinsic heterogeneity that controls the threshold for regeneration in a given vessel. In
fact, genetic tracing analysis using endothelial-specific rainbow mice revealed the presence of cells with
different proliferative potential suggesting the intercalation of progenitors within the wall of the endothelial
monolayer. Taken together, these studies are paradigm shifting for understanding the mechanisms
controlling endothelial regeneration and their deregulations in settings like chronic/acute inflammation,
aging, chronic diseases and physical trauma.
Through this NHLBI Outstanding Investigator Award application our goals are to (1) decode the cellular and
molecular mechanisms controlling the process of endothelial expansion within a formed vessel; (2) clarify
the process involved in endothelial regeneration and repair: (3) understand how hijacking these
mechanisms might either accelerate or impair endothelial regeneration; (4) identify novel targets for
therapeutic interventions aimed at endothelial repair during stenting or other injuries. These series of
broadly defined aims have been conceptualize to fill gaps of our knowledge on fundamental biological
processes in endothelial cell biology but also to exploit this information for application during medical
interventions such as stent coverage. We are energized by the opportunity afforded by this grant
mechanism and for the potential translational impact of these studies.
项目描述/总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M. LUISA IRUELA-ARISPE其他文献
M. LUISA IRUELA-ARISPE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M. LUISA IRUELA-ARISPE', 18)}}的其他基金
REWIRING CANCER-INDUCED ABNORMALITIES IN THE VASCULAR BARRIER
重塑血管屏障中癌症引起的异常
- 批准号:
10915752 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Targeting VEGF-mediated Tumor Angiogenesis in Cancer Therapy
癌症治疗中靶向 VEGF 介导的肿瘤血管生成
- 批准号:
8719790 - 财政年份:2014
- 资助金额:
$ 96万 - 项目类别:
16th Annual International Vascular Biology Meeting
第 16 届国际血管生物学年会
- 批准号:
7915981 - 财政年份:2010
- 资助金额:
$ 96万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Research Grant