Vascular Growth and Regeneration
血管生长和再生
基本信息
- 批准号:10542405
- 负责人:
- 金额:$ 96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-07 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAddressAgingAwardBiological ProcessBlood VesselsCell CycleCell PolarityCellsCellular biologyChemical InjuryChronicChronic DiseaseDataEndothelial CellsEndotheliumGene Expression ProfileGeneticGoalsGrantGrowthHeterogeneityHourHumanImpairmentInflammationInjuryIntercellular JunctionsInterventionKnowledgeLengthMediatingMedicalMetabolismMolecularMusNational Heart, Lung, and Blood InstituteNatural regenerationOutcomePathway interactionsPhysiologicalProcessProliferatingResearch PersonnelSeriesSignal TransductionStentsStressTherapeutic InterventionTraumaTubeTunica IntimaWidthangiogenesisblood perfusioncell regenerationchromatin remodelingeffective therapyendothelial regenerationendothelial repairhealingin vivointercalationmonolayernew therapeutic targetpreventprogenitorregenerativerepairedresponserestenosistranslational impacttranslational potentialvascular bedwound
项目摘要
PROJECT DESCRIPTION / SUMMARY
Much of our collective knowledge on vascular growth has emerged from efforts to understand angiogenesis,
a process by which endothelial cells depart from pre-existent vessels to form new vascular beds.
Nonetheless, once formed, vascular tubes also expand in width, length, and are able to regenerate.
Regeneration is extremely important to the repair of endothelial damage imposed by stents and other
medical devises, as well as to mediate heal after physical/chemical trauma. However our understanding of
the cellular and molecular mechanisms that regulate endothelial growth and regeneration within the context
of a fully functional, blood perfused and pulsatile vessel are limited. Our preliminary data show that
expansion of the tunica intima in vivo occurs through intrinsic proliferation of intimal endothelial cells in a
polarized and organized manner. In fact, a subset of endothelial cells flanking a wound are robustly induced
to enter into the cell cycle as quickly as 12 hours following injury in a highly synchronized fashion. The
process is initiated by changes in cell-cell junctions that trigger molecular rewiring and impressive
physiological changes. Important outcomes of these responses include alterations in endothelial cell
polarity, induction of chromatin remodeling, adjustments in metabolism and a quick emergence of a
transcriptional signature that is unique to regenerative endothelium. This newly identified signature is finely
tuned by the timed release of stress signals that appear to act differentially in the subsets of endothelial
cells, revealing an intrinsic heterogeneity that controls the threshold for regeneration in a given vessel. In
fact, genetic tracing analysis using endothelial-specific rainbow mice revealed the presence of cells with
different proliferative potential suggesting the intercalation of progenitors within the wall of the endothelial
monolayer. Taken together, these studies are paradigm shifting for understanding the mechanisms
controlling endothelial regeneration and their deregulations in settings like chronic/acute inflammation,
aging, chronic diseases and physical trauma.
Through this NHLBI Outstanding Investigator Award application our goals are to (1) decode the cellular and
molecular mechanisms controlling the process of endothelial expansion within a formed vessel; (2) clarify
the process involved in endothelial regeneration and repair: (3) understand how hijacking these
mechanisms might either accelerate or impair endothelial regeneration; (4) identify novel targets for
therapeutic interventions aimed at endothelial repair during stenting or other injuries. These series of
broadly defined aims have been conceptualize to fill gaps of our knowledge on fundamental biological
processes in endothelial cell biology but also to exploit this information for application during medical
interventions such as stent coverage. We are energized by the opportunity afforded by this grant
mechanism and for the potential translational impact of these studies.
项目描述/总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M. LUISA IRUELA-ARISPE其他文献
M. LUISA IRUELA-ARISPE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M. LUISA IRUELA-ARISPE', 18)}}的其他基金
REWIRING CANCER-INDUCED ABNORMALITIES IN THE VASCULAR BARRIER
重塑血管屏障中癌症引起的异常
- 批准号:
10915752 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Targeting VEGF-mediated Tumor Angiogenesis in Cancer Therapy
癌症治疗中靶向 VEGF 介导的肿瘤血管生成
- 批准号:
8719790 - 财政年份:2014
- 资助金额:
$ 96万 - 项目类别:
16th Annual International Vascular Biology Meeting
第 16 届国际血管生物学年会
- 批准号:
7915981 - 财政年份:2010
- 资助金额:
$ 96万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Operating Grants














{{item.name}}会员




