A novel family of conserved glyoxal toxicity response proteins.
一个新的保守乙二醛毒性反应蛋白家族。
基本信息
- 批准号:10365682
- 负责人:
- 金额:$ 44.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAmino AcidsAnabolismAntibioticsAreaArginineAssimilationsAtherosclerosisBacteriaBindingBinding ProteinsBiological AssayCalcium-Binding ProteinsCellsCellular StressCellular StructuresComplexCrystallographyCysteineDataDiabetes MellitusDiseaseDrug Metabolic DetoxicationEnzymesEukaryotaExcisionFamilyFluorescence Resonance Energy TransferGene Expression RegulationGenerationsGenesGeneticGlycolysisGlyoxalGoalsGrantGrowthHealthHeart DiseasesHemeHeme IronHistidineHomeostasisHumanHypertensionImageIronKnowledgeLifeLightLiteratureLongevityLysineMalignant NeoplasmsMapsMass Spectrum AnalysisMembraneMetabolicMetabolismMethodsMicroscopyMixed Function OxygenasesModificationMolecularMutationNamesNatureNerve DegenerationNeuronsNuclear Magnetic ResonanceNutrientOperonOrganismOxidative StressPathway interactionsPatternPlanet EarthPlayPolysaccharidesPredispositionProcessProteinsPseudomonasPseudomonas aeruginosaPyruvaldehydeQuinolonesRegulationResearchResolutionRoleSideSignal PathwaySignal TransductionStressStructureSystemTechniquesTimeToxic effectToxinVesicleVirulence FactorsWorkantimicrobialbiological adaptation to stresscell envelopeexperimental studyheme-binding proteinhuman diseasemutantnervous system disordernovelnovel antibiotic classpathogenic bacteriaprotein functionquorum sensingremediationresponsestemtranscriptome sequencinguptakevirtual
项目摘要
Advanced Glycan End Products (AGEs) are toxic and highly reactive dicarbonyl molecules
produced by most life on earth from routine metabolic processes. As such, conserved and
dedicated detoxifying systems have emerged for dicarbonyl removal. Owing to their importance,
these removal systems are required to maintain longevity, thereby emphasizing the importance
of dicarbonyl detoxification in maintaining health. One of the most prominent dicarbonyl species
is glyoxal, which is predominantly produced as a byproduct of glycolysis. Glyoxal acts by
mounting specific attacks on certain amino acids, namely arginines, cysteines, histidines and
lysines in key proteins, thereby adversely altering protein function. In humans, these
modifications can result in many diseased states, including: cancer, diabetes, nervous system
disorders, heart disease, hypertension, atherosclerosis and aging. Unfortunately, although
dicarbonyl stress-related toxicity is now regarded as important as oxidative stress, knowledge
about how cells are able to detect and respond to glyoxal buildup is, by comparison, severely
lacking. Our lab has discovered a novel class of Antibiotic Monooxygenase (ABM) domains that
we hypothesize sense and respond to glyoxal and related dicarbonyls from bacteria to humans.
This project proposes to elucidate the mechanism by which one of these ABM domains, we
named Glyoxal-ABM Domain 1 (GAD1) responds to glyoxal in the bacterial pathogen
Pseudomonas aeruginosa. We have thus far shown that GAD1 from P. aeruginosa, which is co-
transcribed with the glyoxal detoxification enzyme GloA2, binds heme directly and is also
covalently modified by glyoxal on a conserved arginine residue (Arg49). We hypothesize that
GAD1 and its many homologs are specifically modified on conserved residues, which, in turn,
signals to switch cellular metabolic flux away from glycolysis other pathways unable to produce
the glyoxal toxin. Our studies here will Aim to (1) map GAD1 regulation, (2) determine its cellular
distribution and its interactome and (3) solve the structures of its apo and holo forms, and in
complex with interacting partners in P. aeruginosa. Studying GAD1 in P. aeruginosa is expected
to reveal novel pathways that have potential as new antimicrobial targets, and at the same time
advance our basic understanding of glyoxal toxicity sensing in humans and other multicellular
organisms.
晚期糖链终末产物(AGEs)是有毒的、高活性的二羰基分子
由地球上大多数生命通过常规新陈代谢过程产生。因此,保护和保护
专门的解毒系统已经出现,用于脱除二羰基。由于它们的重要性,
这些移除系统是保持寿命所必需的,因此强调了
二羰基解毒在维持健康方面的作用。最突出的二羰基物种之一
是乙二醛,主要是作为糖酵解的副产品产生的。乙二醛的作用方式
对某些氨基酸,即精氨酸、半胱氨酸、组氨酸和
关键蛋白质中的赖氨酸,从而对蛋白质功能产生不利影响。在人类身上,这些
修饰可以导致许多疾病状态,包括:癌症、糖尿病、神经系统
疾病、心脏病、高血压、动脉粥样硬化和衰老。不幸的是,尽管
知识,现在认为与氧化应激一样重要的是与二酮应激有关的毒性。
相比之下,关于细胞如何能够检测到乙二醛积聚并对其做出反应的问题严重
缺乏。我们实验室发现了一类新的抗生素单加氧酶(ABM)结构域
我们假设从细菌到人类都能感觉到乙二醛和相关的二羰基,并对其做出反应。
这个项目建议阐明这些ABM结构域中的一个,我们
细菌病原菌中乙二醛-ABM结构域1(GAD1)对乙二醛的反应
铜绿假单胞菌。到目前为止,我们已经证明了来自铜绿假单胞菌的GAD1,它是联合-
与乙二醛解毒酶GloA2转录,直接与血红素结合,也是
由乙二醛共价修饰保守的精氨酸残基(Arg49)。我们假设
GAD1及其许多同系物在保守残基上被特异性地修饰,这反过来,
将细胞代谢流量从糖酵解转移到其他无法产生的途径的信号
乙二醛毒素。我们的研究目标是(1)定位GAD1的调控,(2)确定其细胞
分布及其相互作用组;(3)解决其脱脂和全息形式的结构,并在
与铜绿假单胞菌中相互作用的伙伴的复合体。对铜绿假单胞菌GAD1的研究有望实现
揭示有潜力成为新的抗微生物靶点的新途径,同时
促进我们对乙二醛在人类和其他多细胞中的毒性感应的基本理解
有机体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW T ULIJASZ其他文献
ANDREW T ULIJASZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW T ULIJASZ', 18)}}的其他基金
A novel family of conserved glyoxal toxicity response proteins.
一个新的保守乙二醛毒性反应蛋白家族。
- 批准号:
10555214 - 财政年份:2022
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10001426 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10216972 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10444904 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10666412 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 44.59万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 44.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别: