A novel family of conserved glyoxal toxicity response proteins.

一个新的保守乙二醛毒性反应蛋白家族。

基本信息

  • 批准号:
    10555214
  • 负责人:
  • 金额:
    $ 41.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

Advanced Glycan End Products (AGEs) are toxic and highly reactive dicarbonyl molecules produced by most life on earth from routine metabolic processes. As such, conserved and dedicated detoxifying systems have emerged for dicarbonyl removal. Owing to their importance, these removal systems are required to maintain longevity, thereby emphasizing the importance of dicarbonyl detoxification in maintaining health. One of the most prominent dicarbonyl species is glyoxal, which is predominantly produced as a byproduct of glycolysis. Glyoxal acts by mounting specific attacks on certain amino acids, namely arginines, cysteines, histidines and lysines in key proteins, thereby adversely altering protein function. In humans, these modifications can result in many diseased states, including: cancer, diabetes, nervous system disorders, heart disease, hypertension, atherosclerosis and aging. Unfortunately, although dicarbonyl stress-related toxicity is now regarded as important as oxidative stress, knowledge about how cells are able to detect and respond to glyoxal buildup is, by comparison, severely lacking. Our lab has discovered a novel class of Antibiotic Monooxygenase (ABM) domains that we hypothesize sense and respond to glyoxal and related dicarbonyls from bacteria to humans. This project proposes to elucidate the mechanism by which one of these ABM domains, we named Glyoxal-ABM Domain 1 (GAD1) responds to glyoxal in the bacterial pathogen Pseudomonas aeruginosa. We have thus far shown that GAD1 from P. aeruginosa, which is co- transcribed with the glyoxal detoxification enzyme GloA2, binds heme directly and is also covalently modified by glyoxal on a conserved arginine residue (Arg49). We hypothesize that GAD1 and its many homologs are specifically modified on conserved residues, which, in turn, signals to switch cellular metabolic flux away from glycolysis other pathways unable to produce the glyoxal toxin. Our studies here will Aim to (1) map GAD1 regulation, (2) determine its cellular distribution and its interactome and (3) solve the structures of its apo and holo forms, and in complex with interacting partners in P. aeruginosa. Studying GAD1 in P. aeruginosa is expected to reveal novel pathways that have potential as new antimicrobial targets, and at the same time advance our basic understanding of glyoxal toxicity sensing in humans and other multicellular organisms.
晚期糖基化终产物(AGEs)是一种毒性大、反应活性高的二羰基分子 是地球上大多数生命通过常规代谢过程产生的。因此,保守和 已经出现了用于去除二羰基的专用解毒系统。由于其重要性, 这些清除系统需要保持寿命,从而强调了 二羰基解毒在维持健康方面的作用。最重要的二羰基化合物之一 是乙二醛,其主要作为糖酵解的副产物产生。乙二醛的作用是 对某些氨基酸,即甘氨酸、半胱氨酸、组氨酸和 关键蛋白质中的赖氨酸,从而不利地改变蛋白质功能。在人类中,这些 基因修饰可导致多种疾病,包括:癌症、糖尿病、神经系统疾病 疾病、心脏病、高血压、动脉粥样硬化和衰老。可惜 二羰基应激相关的毒性现在被认为与氧化应激一样重要, 相比之下,关于细胞如何能够检测和响应乙二醛的积累, 缺乏我们的实验室发现了一类新的抗生素单加氧酶(ABM)结构域, 我们假设从细菌到人类对乙二醛和相关的二羰基化合物有感觉和反应。 本项目旨在阐明这些ABM域之一的机制,我们 在细菌病原体中,称为Glyco-ABM结构域1(GAD 1)的结构域响应于乙二醛 绿脓杆菌。到目前为止,我们已经表明,来自铜绿假单胞菌的GAD 1,它是共同的, 用乙二醛解毒酶GloA 2转录,直接结合血红素, 在保守的精氨酸残基(Arg 49)上被乙二醛共价修饰。我们假设 GAD 1及其许多同源物在保守残基上被特异性修饰,反过来, 将细胞代谢流从糖酵解中转换出来的信号, 乙二醛毒素本研究的目的是(1)绘制GAD 1的调控图谱,(2)确定GAD 1在细胞内的表达情况,(3)确定GAD 1在细胞内的表达情况。 分布及其相互作用组;(3)解决其apo和holo形式的结构, 与铜绿假单胞菌中的相互作用伙伴复合。研究铜绿假单胞菌中的GAD 1是预期的 揭示有潜力作为新的抗菌靶点的新途径,同时 推进我们对人类和其他多细胞生物中乙二醛毒性传感的基本理解 有机体

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANDREW T ULIJASZ其他文献

ANDREW T ULIJASZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANDREW T ULIJASZ', 18)}}的其他基金

A novel family of conserved glyoxal toxicity response proteins.
一个新的保守乙二醛毒性反应蛋白家族。
  • 批准号:
    10365682
  • 财政年份:
    2022
  • 资助金额:
    $ 41.12万
  • 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
  • 批准号:
    10001426
  • 财政年份:
    2019
  • 资助金额:
    $ 41.12万
  • 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
  • 批准号:
    10216972
  • 财政年份:
    2019
  • 资助金额:
    $ 41.12万
  • 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
  • 批准号:
    10444904
  • 财政年份:
    2019
  • 资助金额:
    $ 41.12万
  • 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
  • 批准号:
    10666412
  • 财政年份:
    2019
  • 资助金额:
    $ 41.12万
  • 项目类别:

相似海外基金

Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
  • 批准号:
    2888395
  • 财政年份:
    2023
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 41.12万
  • 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
  • 批准号:
    10728925
  • 财政年份:
    2023
  • 资助金额:
    $ 41.12万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 41.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了