Harmonization of breast MRI data
乳腺 MRI 数据的协调
基本信息
- 批准号:10367288
- 负责人:
- 金额:$ 65.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAddressAdoptionAlgorithmsAppearanceBrainBreastBreast Magnetic Resonance ImagingCancer DetectionClinicalCollaborationsComputational algorithmDataData SetDiagnosisDiseaseEvaluationGenomicsHeadHip region structureImageInstitutionJournalsMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMammary NeoplasmsManufacturer NameMethodologyMethodsModelingModernizationModificationNoiseOrganPaperPatient-Focused OutcomesPatientsPublicationsReproducibilityResearchResearch PersonnelScanningScientistSourceStructureTextureThinkingTimeTissuesTrainingTranslationsValidationWorkbasebreast imagingcancer riskclinical applicationclinical implementationclinical practicecontrast enhancedconvolutional neural networkdeep learningdeep learning algorithmexpectationexperiencegenerative adversarial networkgenomic signaturehigh riskimaging modalityimprovedinnovationlinear transformationnovelnovel strategiesoutcome predictionpatient prognosispractical applicationpredictive modelingradiologistradiomicsreconstructiontumor
项目摘要
ABSTRACT
Different magnetic resonance imaging (MRI) scanners and different acquisition parameters can produce very
different images for the same patients. This is a significant issue when attempting to use MRIs in a quantitative
manner. Multiple studies have shown promise of quantitative analysis of breast MRIs to diagnose breast
tumors, predict patient outcomes, assess cancer risk, and even identify genomic signatures of cancers.
However, the issue of inhomogeneity of images hampers the progress of the research and clinical
implementation of these findings. In many cases one cannot utilize images from different sources to answer a
research question. Furthermore, predictive models developed at one institution may not generalize to other
institutions. While this is a well-recognized problem, there is currently no solution to it in breast MRI. Some
valid efforts have been undertaken in order to address this issue for other organs, predominantly brain.
However, the problem has not been solved for those organs neither and limited validation of the existing
methods in practical contexts hampers the implementation. Breast is a non-rigid organ with highly variable
composition making the harmonization of breast MRIs particularly challenging and making almost all prior
harmonization methods developed for brain not applicable. Given the urgent need for harmonization in
quantitative research, we propose three harmonization methods that allow for transforming an image acquired
using one scanner setup to assume appearance of another scanner setup. We introduce important technical
innovations to utilize cutting-edge convolutional neural networks for this task. Additionally, we propose a new
approach to the question that has not yet attracted significant systematic consideration: what makes a
harmonization algorithm successful or useful? We do not evaluate pixel-to-pixel match between the
harmonized image and a reference image which is the typical approach. This approach is impractical in breast
imaging since it requires ideally paired images, it does not deal well with expected image noise, and it does not
inform about specific limitations of the evaluated harmonization method. We propose an evaluation framework
that assesses harmonization algorithms in terms of different practical applications including radiomic analysis
and deep learning. The study will be conducted in collaboration between a machine learning scientists (Duke
and Yale), a breast MRI physicist (Cornell), a radiologist whose research focuses on MRI (Duke), and a
biostatistician (Duke). The proposed harmonization and evaluation methods do not require fully paired data
and do not make assumptions about tissue composition. Therefore, they will be applicable across other organs
once implemented with appropriate data for the organ. All harmonization and evaluation algorithms along with
the data will be made publicly available to spearhead further research on this crucial unsolved research topic.
抽象的
不同的磁共振成像 (MRI) 扫描仪和不同的采集参数可以产生非常不同的结果。
同一患者的不同图像。当尝试使用 MRI 进行定量分析时,这是一个重要的问题。
方式。多项研究表明,通过乳腺 MRI 定量分析来诊断乳腺有希望
肿瘤、预测患者结果、评估癌症风险,甚至识别癌症的基因组特征。
然而,图像不均匀性问题阻碍了研究和临床的进展。
实施这些调查结果。在许多情况下,人们无法利用不同来源的图像来回答问题
研究问题。此外,一个机构开发的预测模型可能无法推广到其他机构
机构。虽然这是一个众所周知的问题,但目前乳腺 MRI 尚无解决方案。一些
为了解决其他器官(主要是大脑)的这个问题,已经做出了有效的努力。
然而,这些器官的问题还没有得到解决,现有的验证也很有限。
实际情况中的方法阻碍了实施。乳房是一个非刚性器官,具有高度可变性
组合使得乳腺 MRI 的协调特别具有挑战性,并且使得几乎所有先前的
为大脑开发的协调方法不适用。鉴于迫切需要协调
定量研究中,我们提出了三种协调方法,可以转换所获取的图像
使用一个扫描仪设置来呈现另一扫描仪设置的外观。我们介绍重要的技术
利用尖端的卷积神经网络来完成这项任务的创新。此外,我们提出了一个新的
尚未引起重大系统性思考的问题的方法:什么使
协调算法成功还是有用?我们不评估像素之间的匹配
协调图像和参考图像是典型的方法。这种方法在乳房中不切实际
成像,因为它需要理想配对的图像,它不能很好地处理预期的图像噪声,并且它不能
告知评估的协调方法的具体局限性。我们提出一个评估框架
根据不同的实际应用(包括放射组学分析)评估协调算法
和深度学习。该研究将由机器学习科学家(杜克大学)合作进行
和耶鲁大学)、乳腺 MRI 物理学家(康奈尔大学)、研究重点是 MRI 的放射科医生(杜克大学)和
生物统计学家(杜克大学)。所提出的协调和评估方法不需要完全配对的数据
并且不对组织成分做出假设。因此,它们将适用于其他器官
一旦使用该器官的适当数据实施。所有协调和评估算法以及
这些数据将公开,以推动对这一重要的未解决研究课题的进一步研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maciej A. Mazurowski其他文献
Computed Tomography Volumetrics for Size Matching in Lung Transplantation for Restrictive Disease
- DOI:
10.1016/j.athoracsur.2023.03.033 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:
- 作者:
Neel K. Prabhu;Megan K. Wong;Jacob A. Klapper;John C. Haney;Maciej A. Mazurowski;Joseph G. Mammarappallil;Matthew G. Hartwig - 通讯作者:
Matthew G. Hartwig
Convolutional Neural Networks Rarely Learn Shape for Semantic Segmentation
卷积神经网络很少学习语义分割的形状
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8
- 作者:
Yixin Zhang;Maciej A. Mazurowski - 通讯作者:
Maciej A. Mazurowski
Thyroid Nodules on Ultrasound in Children and Young Adults: Comparison of Diagnostic Performance of Radiologists' Impressions, ACR TI-RADS, and a Deep Learning Algorithm.
儿童和年轻人超声检查甲状腺结节:放射科医生印象、ACR TI-RADS 和深度学习算法的诊断性能比较。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jichen Yang;Laura C. Page;Lars Wagner;B. Wildman;Logan Bisset;D. Frush;Maciej A. Mazurowski - 通讯作者:
Maciej A. Mazurowski
Lightweight Transformer Backbone for Medical Object Detection
用于医疗物体检测的轻量级变压器主干
- DOI:
10.1007/978-3-031-17979-2_5 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yifan Zhang;Haoyu Dong;N. Konz;Han Gu;Maciej A. Mazurowski - 通讯作者:
Maciej A. Mazurowski
SegmentAnyBone: A Universal Model that Segments Any Bone at Any Location on MRI
SegmentAnyBone:一种通用模型,可在 MRI 上的任何位置分割任何骨骼
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Han Gu;R. Colglazier;Haoyu Dong;Jikai Zhang;Yaqian Chen;Zafer Yildiz;Yuwen Chen;Lin Li;Jichen Yang;J. Willhite;Alex M. Meyer;Brian Guo;Yashvi Atul Shah;Emily Luo;Shipra Rajput;Sally Kuehn;Clark Bulleit;Kevin A. Wu;Jisoo Lee;Brandon Ramirez;Darui Lu;Jay M. Levin;Maciej A. Mazurowski - 通讯作者:
Maciej A. Mazurowski
Maciej A. Mazurowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maciej A. Mazurowski', 18)}}的其他基金
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Research Grant