Harmonization of breast MRI data

乳腺 MRI 数据的协调

基本信息

  • 批准号:
    10703350
  • 负责人:
  • 金额:
    $ 52.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

ABSTRACT Different magnetic resonance imaging (MRI) scanners and different acquisition parameters can produce very different images for the same patients. This is a significant issue when attempting to use MRIs in a quantitative manner. Multiple studies have shown promise of quantitative analysis of breast MRIs to diagnose breast tumors, predict patient outcomes, assess cancer risk, and even identify genomic signatures of cancers. However, the issue of inhomogeneity of images hampers the progress of the research and clinical implementation of these findings. In many cases one cannot utilize images from different sources to answer a research question. Furthermore, predictive models developed at one institution may not generalize to other institutions. While this is a well-recognized problem, there is currently no solution to it in breast MRI. Some valid efforts have been undertaken in order to address this issue for other organs, predominantly brain. However, the problem has not been solved for those organs neither and limited validation of the existing methods in practical contexts hampers the implementation. Breast is a non-rigid organ with highly variable composition making the harmonization of breast MRIs particularly challenging and making almost all prior harmonization methods developed for brain not applicable. Given the urgent need for harmonization in quantitative research, we propose three harmonization methods that allow for transforming an image acquired using one scanner setup to assume appearance of another scanner setup. We introduce important technical innovations to utilize cutting-edge convolutional neural networks for this task. Additionally, we propose a new approach to the question that has not yet attracted significant systematic consideration: what makes a harmonization algorithm successful or useful? We do not evaluate pixel-to-pixel match between the harmonized image and a reference image which is the typical approach. This approach is impractical in breast imaging since it requires ideally paired images, it does not deal well with expected image noise, and it does not inform about specific limitations of the evaluated harmonization method. We propose an evaluation framework that assesses harmonization algorithms in terms of different practical applications including radiomic analysis and deep learning. The study will be conducted in collaboration between a machine learning scientists (Duke and Yale), a breast MRI physicist (Cornell), a radiologist whose research focuses on MRI (Duke), and a biostatistician (Duke). The proposed harmonization and evaluation methods do not require fully paired data and do not make assumptions about tissue composition. Therefore, they will be applicable across other organs once implemented with appropriate data for the organ. All harmonization and evaluation algorithms along with the data will be made publicly available to spearhead further research on this crucial unsolved research topic.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maciej A. Mazurowski其他文献

Computed Tomography Volumetrics for Size Matching in Lung Transplantation for Restrictive Disease
  • DOI:
    10.1016/j.athoracsur.2023.03.033
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Neel K. Prabhu;Megan K. Wong;Jacob A. Klapper;John C. Haney;Maciej A. Mazurowski;Joseph G. Mammarappallil;Matthew G. Hartwig
  • 通讯作者:
    Matthew G. Hartwig
Convolutional Neural Networks Rarely Learn Shape for Semantic Segmentation
卷积神经网络很少学习语义分割的形状
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Yixin Zhang;Maciej A. Mazurowski
  • 通讯作者:
    Maciej A. Mazurowski
Thyroid Nodules on Ultrasound in Children and Young Adults: Comparison of Diagnostic Performance of Radiologists' Impressions, ACR TI-RADS, and a Deep Learning Algorithm.
儿童和年轻人超声检查甲状腺结节:放射科医生印象、ACR TI-RADS 和深度学习算法的诊断性能比较。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jichen Yang;Laura C. Page;Lars Wagner;B. Wildman;Logan Bisset;D. Frush;Maciej A. Mazurowski
  • 通讯作者:
    Maciej A. Mazurowski
Lightweight Transformer Backbone for Medical Object Detection
用于医疗物体检测的轻量级变压器主干
  • DOI:
    10.1007/978-3-031-17979-2_5
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yifan Zhang;Haoyu Dong;N. Konz;Han Gu;Maciej A. Mazurowski
  • 通讯作者:
    Maciej A. Mazurowski
SegmentAnyBone: A Universal Model that Segments Any Bone at Any Location on MRI
SegmentAnyBone:一种通用模型,可在 MRI 上的任何位置分割任何骨骼
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han Gu;R. Colglazier;Haoyu Dong;Jikai Zhang;Yaqian Chen;Zafer Yildiz;Yuwen Chen;Lin Li;Jichen Yang;J. Willhite;Alex M. Meyer;Brian Guo;Yashvi Atul Shah;Emily Luo;Shipra Rajput;Sally Kuehn;Clark Bulleit;Kevin A. Wu;Jisoo Lee;Brandon Ramirez;Darui Lu;Jay M. Levin;Maciej A. Mazurowski
  • 通讯作者:
    Maciej A. Mazurowski

Maciej A. Mazurowski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maciej A. Mazurowski', 18)}}的其他基金

Harmonization of breast MRI data
乳腺 MRI 数据的协调
  • 批准号:
    10367288
  • 财政年份:
    2022
  • 资助金额:
    $ 52.4万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了