Image Tools for Computational Cellular Barcoding and Automated Annotation

用于计算细胞条形码和自动注释的图像工具

基本信息

  • 批准号:
    10367874
  • 负责人:
  • 金额:
    $ 41.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-19 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY With technological breakthroughs in high-throughput single-cell imaging and screening, we can precisely monitor native cell behavior in response to diverse stimuli. Improvements in resolution and new detection capacity further enrich the recording from each cell. Many image-processing steps that help to extract the full breadth of the recording can be automated to a throughput comparable to the imaging itself. However, because biological samples can be complex and nonhomogeneous, it is valuable to specify subsets of cells when addressing downstream biological questions. With the amount of data that can now be generated from high-throughput measurements, this subset-selection step is a significant bottleneck to obtaining a quantitative result about the biological sample. Currently, the gold standard to reliably filter through cell data is manual annotation by a technician. This approach is costly and time-consuming, creating a significant bottleneck to answering important biological questions. To overcome this bottleneck, we will develop tools to automate annotation with three unique approaches: chemical annotation, annotation amplification, and cellular barcoding. Chemical annotation will deliver a computer-readable cell label via an additional biomarker. Annotation amplification will use small, curated datasets to generate large ones. Cellular barcoding will identify pixel-based signatures to uniquely identify individual cells. Once annotation is addressed computationally, relevant cells can be classified in-line with the acquisition. We can then produce a large annotated dataset. Both the computational tools and data repository will be shared with the scientific community as a validation set for new models and as a foundation for algorithms that could be developed across research groups studying cells with fluorescence imaging. The goal of this work is to generate the technology and define the experimental-computational methods that automate the highly manual steps of cell curation through a strong interplay between wet-lab and machine-learning techniques. The technology we propose is relevant to a broad scope of high-throughput measurement applications, because it enables curating samples computationally rather than experimentally.
项目总结 随着高通量单细胞成像和筛查技术的突破,我们可以精确地监测 自然细胞对不同刺激的反应行为。进一步提高分辨率和新的检测能力 丰富每个单元格的录制内容。许多图像处理步骤,帮助提取完整的 记录可以自动化到与成像本身相当的吞吐量。然而,因为生物 样本可以是复杂的和非均匀的,在寻址时指定像元子集是很有价值的 下游的生物学问题。使用现在可以从高吞吐量生成的数据量 测量时,这一子集选择步骤是获得关于 生物样本。目前,可靠地筛选单元格数据的黄金标准是通过 技术员。这种方法既昂贵又耗时,给回答重要的问题造成了严重的瓶颈 生物问题。为了克服这一瓶颈,我们将开发工具来使用三个唯一的 方法:化学注释法、注释法和细胞条码法。化学注解将 通过额外的生物标记物提供计算机可读的细胞标签。注释放大将使用小的、 精选数据集以生成大型数据集。蜂窝条形码将识别基于像素的签名以唯一 识别单个细胞。一旦对注记进行了计算处理,就可以对相关像元进行内联分类 随着收购的进行。然后,我们可以生成一个大型的带注释的数据集。无论是计算工具还是数据 将与科学界共享存储库,作为新模型的验证集并作为 可以在研究荧光成像细胞的研究小组之间开发的算法。目标是 这项工作的重点是生成技术并定义实验计算方法,使 通过湿实验室和机器学习技术之间的强烈相互作用,高度手动的细胞管理步骤。 我们提出的技术适用于大范围的高通量测量应用,因为 它可以通过计算而不是实验来管理样本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEVEN M FINKBEINER其他文献

STEVEN M FINKBEINER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEVEN M FINKBEINER', 18)}}的其他基金

Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
  • 批准号:
    10552638
  • 财政年份:
    2022
  • 资助金额:
    $ 41.35万
  • 项目类别:
Role of central and peripheral immune crosstalk in FTD-Grn neurodegeneration
中枢和外周免疫串扰在 FTD-Grn 神经变性中的作用
  • 批准号:
    10514263
  • 财政年份:
    2022
  • 资助金额:
    $ 41.35万
  • 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
  • 批准号:
    9974319
  • 财政年份:
    2020
  • 资助金额:
    $ 41.35万
  • 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
  • 批准号:
    10377486
  • 财政年份:
    2020
  • 资助金额:
    $ 41.35万
  • 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
  • 批准号:
    10601035
  • 财政年份:
    2020
  • 资助金额:
    $ 41.35万
  • 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
  • 批准号:
    10599756
  • 财政年份:
    2020
  • 资助金额:
    $ 41.35万
  • 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
  • 批准号:
    10406707
  • 财政年份:
    2019
  • 资助金额:
    $ 41.35万
  • 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
  • 批准号:
    10651757
  • 财政年份:
    2019
  • 资助金额:
    $ 41.35万
  • 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
  • 批准号:
    10439255
  • 财政年份:
    2019
  • 资助金额:
    $ 41.35万
  • 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
  • 批准号:
    10450771
  • 财政年份:
    2019
  • 资助金额:
    $ 41.35万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了