Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
基本信息
- 批准号:10599756
- 负责人:
- 金额:$ 37.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAnimal ModelAnimalsArtificial IntelligenceBiological MarkersBiologyBiosensorBrainCell DeathCellsCellular MorphologyCessation of lifeCommunitiesComputer Vision SystemsDataData AnalysesData SetDevelopmentDown SyndromeEthical AnalysisEthicsFrontotemporal DementiaFundingGrantHumanImageImage AnalysisImaging technologyIndividualInduced pluripotent stem cell derived neuronsLabelLearningLinkMachine LearningMathematicsMicroscopyModelingMonitorMorphologyNerve DegenerationNeurodegenerative DisordersNeuronsNuclearOrganoidsOutcomeOutcome StudyParentsPathogenesisPatientsPopulation HeterogeneityProcessPropertyProteinsReportingResearchResearch PersonnelResistanceSignal TransductionStandardizationStructureSupervisionTauopathiesTechnologyTimeTrainingUnited States National Institutes of HealthVisualZebrafishalgorithm trainingbasecell typeconvolutional neural networkdeep learning algorithmdeep neural networkexperimental studyhuman imaginghuman modelimaging modalityimaging studyimprovedin vivoinnovationmicroscopic imagingneural networkneural network algorithmneuron lossnovelnovel strategiesrobotic microscopyserial imagingtau Proteinstoolunethical
项目摘要
PROJECT SUMMARY
Our studies will develop and implement novel artificial intelligence (AI)/ machine learning (ML) technologies to
reduce experimental unethical bias in analysis of imaging data of our studies in our parent, NIH-funded grant
(AG064579-02) that focuses on identifying mechanisms of neurodegeneration in Alzheimer’s disease and
Frontotemporal dementia. We study neurodegeneration in human iPSC-derived neurons (i-neurons) of controls
and patients with tauopathies in 3-dimensional (3D) human brain organoids and use robotic microscopy (RM) to
monitor changes in morphology and structure of individual i-neurons in large populations of heterogeneous cells
over time as an indicator of neurodegeneration. Since the initiation of this grant, we have developed novel
approaches to study mechanisms of neurodegeneration with a unique biosensor (Genetically encoded cell death
indicator – GEDI) that acutely identifies living neurons at a stage at which they are irreversibly committed to die.
Initially, imaging data from these studies involved human curation, which carries some degree of experimental
bias that can cause ethical problems in interpretation of data. To reduce experimental bias of our data analysis,
we have developed ML and deep neural networks (DNN) and use a subclass of DNN, convolutional neural
networks (CNNs) which have mathematical properties particularly adept at Computer Vision. We have developed
deep learning (DL) algorithms for detecting neuronal death by constructing a novel quantitative RM pipeline that
automatically generates GEDI-curated data to train a CNN without human input. The resulting GEDI-CNN
detects neuronal death from images of morphology alone, alleviating the need for any additional use of GEDI in
subsequent experiments. Through systematic analysis of a trained GEDI-CNN, we find that it learns to detect
death in neurons by locating morphology linked to death, despite receiving no explicit supervision toward these
features. Uniquely, it detects cell death as a change in nuclear readouts as well as other cellular features, which
human curation can’t easily identify. We also show that this model generalizes to images captured with different
parameters or displays of neurons and cell types from different species without additional training. The advances
we made in unbiased AI image analysis are not restricted to our benefit but will be applicable to a large range of
ML based imaging studies of other investigators because it focuses on improving how the CNN algorithms are
trained to analyze data without the need of humans but with super-human accuracy. In this supplemental
application, we will further develop this novel ethical AI technology for studies on neurodegeneration of human
i-neurons in 3D brain organoids using GEDI-CNN. We will refine the CNN algorithms to optimize and standardize
its widespread use in ethical analysis of live imaging analysis and provide the technology to the scientific
community for AI-based imaging research.
项目概要
我们的研究将开发和实施新型人工智能(AI)/机器学习(ML)技术
减少我们在 NIH 资助的母公司研究的成像数据分析中的实验不道德偏差
(AG064579-02)专注于识别阿尔茨海默病和神经退行性疾病的机制
额颞叶痴呆。我们研究对照的人类 iPSC 衍生神经元(i-神经元)的神经退行性变
以及 3 维 (3D) 人脑类器官中患有 tau蛋白病的患者,并使用机器人显微镜 (RM) 来
监测大量异质细胞中单个 i 神经元的形态和结构变化
随着时间的推移,作为神经退行性变的指标。自这项资助启动以来,我们开发了新颖的
使用独特的生物传感器(基因编码的细胞死亡)研究神经退行性变机制的方法
指示器(GEDI),可以敏锐地识别处于不可逆转的死亡阶段的活神经元。
最初,这些研究的成像数据涉及人类管理,这带有一定程度的实验性
可能导致数据解释道德问题的偏见。为了减少我们数据分析的实验偏差,
我们开发了 ML 和深度神经网络 (DNN),并使用 DNN 的子类——卷积神经网络
网络(CNN)具有特别擅长计算机视觉的数学特性。我们开发了
深度学习 (DL) 算法通过构建新颖的定量 RM 管道来检测神经元死亡
自动生成 GEDI 整理的数据来训练 CNN,无需人工输入。由此产生的 GEDI-CNN
仅从形态学图像中即可检测神经元死亡,从而减少了在检测中额外使用 GEDI 的需要
后续实验。通过对经过训练的 GEDI-CNN 进行系统分析,我们发现它学会了检测
通过定位与死亡相关的形态来识别神经元的死亡,尽管没有接受对这些死亡的明确监督
特征。独特的是,它通过核读数以及其他细胞特征的变化来检测细胞死亡,这
人类的管理无法轻易识别。我们还表明,该模型可推广到使用不同方式捕获的图像
无需额外训练即可显示来自不同物种的神经元和细胞类型的参数或显示。进展情况
我们在公正的人工智能图像分析中所做的并不局限于我们的利益,而是适用于大范围的
其他研究人员基于 ML 的成像研究,因为它专注于改进 CNN 算法
经过训练,可以在不需要人类的情况下分析数据,但具有超人类的准确性。在这个补充
应用程序,我们将进一步开发这种新颖的伦理人工智能技术,用于人类神经退行性疾病的研究
使用 GEDI-CNN 观察 3D 大脑类器官中的 i 神经元。我们将对CNN算法进行细化优化和标准化
它广泛应用于实时成像分析的伦理分析,并为科学界提供技术
基于人工智能的成像研究社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN M FINKBEINER其他文献
STEVEN M FINKBEINER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN M FINKBEINER', 18)}}的其他基金
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
- 批准号:
10552638 - 财政年份:2022
- 资助金额:
$ 37.8万 - 项目类别:
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
- 批准号:
10367874 - 财政年份:2022
- 资助金额:
$ 37.8万 - 项目类别:
Role of central and peripheral immune crosstalk in FTD-Grn neurodegeneration
中枢和外周免疫串扰在 FTD-Grn 神经变性中的作用
- 批准号:
10514263 - 财政年份:2022
- 资助金额:
$ 37.8万 - 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:
9974319 - 财政年份:2020
- 资助金额:
$ 37.8万 - 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:
10377486 - 财政年份:2020
- 资助金额:
$ 37.8万 - 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:
10601035 - 财政年份:2020
- 资助金额:
$ 37.8万 - 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:
10406707 - 财政年份:2019
- 资助金额:
$ 37.8万 - 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:
10651757 - 财政年份:2019
- 资助金额:
$ 37.8万 - 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:
10439255 - 财政年份:2019
- 资助金额:
$ 37.8万 - 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:
10450771 - 财政年份:2019
- 资助金额:
$ 37.8万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 37.8万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 37.8万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 37.8万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 37.8万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 37.8万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 37.8万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 37.8万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 37.8万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 37.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 37.8万 - 项目类别:
Operating Grants














{{item.name}}会员




