Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
基本信息
- 批准号:10439255
- 负责人:
- 金额:$ 44.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAgitationAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAutopsyBiological MarkersBipolar DisorderBrainCaregiver BurdenCellsClinicalClinical TrialsDataData SetDelusionsDementiaDiagnosisDiseaseElectronic Health RecordEpigenetic ProcessGene ExpressionGene Expression ProfileGenetic Enhancer ElementGenetic MarkersGenotypeGoalsHallucinationsHumanImpaired cognitionInstitutionalizationInterventionLeadMajor Depressive DisorderMental DepressionMethodsModelingMolecularNerve DegenerationPathologyPathway interactionsPatientsPersonsPrognosisPublic HealthQuality of lifeRegulatory ElementResearchResolutionSamplingSchizophreniaSeveritiesSymptomsTestingTherapeuticTimebiobankbrain tissuecare giving burdencell typeclinical diagnosiscostdaily functioningdeep learningfunctional genomicsgenomic datahigh dimensionalityinnovationlearning strategymild cognitive impairmentmolecular markerneuropathologyneuropsychiatric symptomneuropsychiatrynovelnovel therapeuticspatient stratificationphenomicsphenotypic biomarkerpotential biomarkerpredictive modelingsevere mental illnesstraittranslational potential
项目摘要
GENERAL PROJECT DESCRIPTION: ABSTRACT
Neuropsychiatric symptoms (NPS) are core features of Alzheimer’s disease (AD) and related dementias
that are associated with major adverse effects on daily function and quality of life, and accelerate time to
institutionalization. Of all the NPS, depression is the most frequently observed symptom in people with mild
cognitive impairment and early AD. As the disease progresses, agitation, delusions and hallucinations become
more common, whereas apathy is the most persistent and frequent NPS throughout all the stages of AD. AD-
NPS share some clinical features with serious mental illnesses (SMIs), such as schizophrenia, bipolar disorder
and major depressive disorder, but whether these conditions share similar aethiopathies is unclear. Given that
reliable treatments for NPS in the context of AD and other dementias do not exist, a better understanding of the
molecular mechanisms and pathways underlying NPS in AD and other neuropsychiatric illnesses is a critical
next step to identify reliable biomarkers that could lead to novel therapeutics.
There are two overarching goals of this proposal. First, we will identify the molecular mechanisms and
neuropathological changes that are associated with the presence of NPS in patients with AD. Second, we will
examine if the mechanisms of pathology associated with NPS are shared or distinct among AD and SMIs. More
specifically, we propose to build multi-scale integrative models using phenomics and genomics data from 1,264
autopsy cases derived from a single brain bank. The bank includes detailed phenomics data such as well
characterized NPS, clinical diagnosis (AD and other neurodegenerative or neuropsychiatric traits), severity of
cognitive decline and neuropathology for each patient sample. From each case, we will apply innovative
approaches that reduce the cost and technical biases associated with conventional methods, and capture gene
expression signatures and epigenetic regulatory elements at the single-cell level. Novel deep-learning methods
will be applied for the multi-scale integration of neuropathologic changes with genetic markers and functional
genomic changes (such as changes in gene expression and enhancer sequences) within specific cell types, to
predict various NPS in AD and other neuropsychiatric traits; we refer to these integrative models as genotype-
marker-phenotype models. We expect that these models will enable us to assign genotypes and molecular
markers to specific NPS within AD and other neuropsychiatric traits at the single-cell level, an unprecedented
level of resolution. In addition, we will test the translational potential of the genotype-marker-phenotype models
to predict AD-NPS using independent large-scale biobank datasets, in which genotypes and electronic health
records are available. Successful completion of the proposed studies will have immediate utility by generating
potential biomarkers for NPS diagnosis and prognosis and by providing predictive models for patient stratification
in clinical trials. In the longer term, our models will help us create a blueprint for therapeutic strategies and
interventions to treat NPS in AD.
一般项目描述:摘要
神经精神症状(Neuropsychiatric symptoms,NMPs)是阿尔茨海默病(Alzheimer's disease,AD)及其相关痴呆的核心特征
与对日常功能和生活质量的主要不良影响相关,并加速
制度化。在所有这些症状中,抑郁症是轻度抑郁症患者最常见的症状。
认知障碍和早期AD。随着病情的发展,激动,妄想和幻觉变得
更常见,而冷漠是AD所有阶段中最持久和最常见的症状。AD-
精神分裂症和双相情感障碍等严重精神疾病有共同的临床特征
和重度抑郁症,但这些疾病是否有相似的精神病尚不清楚。鉴于
在AD和其他痴呆症的背景下,不存在可靠的治疗方法,更好地了解
AD和其他神经精神疾病中NPS的分子机制和途径是关键
下一步是确定可靠的生物标志物,可能导致新的治疗方法。
这项建议有两个首要目标。首先,我们将确定分子机制,
神经病理学变化与AD患者中存在的神经胶质瘤有关。二是
检查AD和SMI之间是否存在共同或不同的与AD相关的病理机制。更
具体地说,我们建议使用来自1264个国家的表型组学和基因组学数据建立多尺度综合模型,
从一个脑库中提取的尸检案例该银行包括详细的表型组学数据,
特征性痴呆、临床诊断(AD和其他神经退行性或神经精神病学特征)、
认知衰退和神经病理学。从每一个案例中,我们将应用创新的
减少与传统方法相关的成本和技术偏差的方法,
表达标签和表观遗传调控元件在单细胞水平。新的深度学习方法
将应用于神经病理变化与遗传标记和功能的多尺度整合
特定细胞类型内的基因组变化(如基因表达和增强子序列的变化),
预测AD和其他神经精神特征的各种基因型;我们将这些综合模型称为基因型-
标记-表型模型我们希望这些模型将使我们能够分配基因型和分子
在单细胞水平上,AD和其他神经精神特征中的特异性标志物,这是前所未有的
分辨率水平。此外,我们将测试基因型-标记-表型模型的翻译潜力
使用独立的大规模生物库数据集预测AD-100,其中基因型和电子健康
记录可用。成功完成拟议的研究将产生直接的效用,
潜在的生物标志物,用于乳腺癌的诊断和预后,并提供用于患者分层的预测模型
在临床试验阶段从长远来看,我们的模型将帮助我们制定治疗策略的蓝图,
干预措施来治疗阿尔茨海默病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN M FINKBEINER其他文献
STEVEN M FINKBEINER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN M FINKBEINER', 18)}}的其他基金
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
- 批准号:
10552638 - 财政年份:2022
- 资助金额:
$ 44.14万 - 项目类别:
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
- 批准号:
10367874 - 财政年份:2022
- 资助金额:
$ 44.14万 - 项目类别:
Role of central and peripheral immune crosstalk in FTD-Grn neurodegeneration
中枢和外周免疫串扰在 FTD-Grn 神经变性中的作用
- 批准号:
10514263 - 财政年份:2022
- 资助金额:
$ 44.14万 - 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:
9974319 - 财政年份:2020
- 资助金额:
$ 44.14万 - 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:
10377486 - 财政年份:2020
- 资助金额:
$ 44.14万 - 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:
10601035 - 财政年份:2020
- 资助金额:
$ 44.14万 - 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:
10599756 - 财政年份:2020
- 资助金额:
$ 44.14万 - 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:
10406707 - 财政年份:2019
- 资助金额:
$ 44.14万 - 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:
10651757 - 财政年份:2019
- 资助金额:
$ 44.14万 - 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:
10450771 - 财政年份:2019
- 资助金额:
$ 44.14万 - 项目类别:
相似海外基金
Effects of dexmedetomidine on agitation in critically ill TBI patients - DEX-TBI
右美托咪定对危重 TBI 患者躁动的影响 - DEX-TBI
- 批准号:
488402 - 财政年份:2023
- 资助金额:
$ 44.14万 - 项目类别:
Operating Grants
Relationship between Biomarkers of Oxidative Stress and Agitation Severity in Moderate-to-severe Alzheimer's Disease
中重度阿尔茨海默病氧化应激生物标志物与躁动严重程度之间的关系
- 批准号:
497994 - 财政年份:2023
- 资助金额:
$ 44.14万 - 项目类别:
Co-design and evaluation of sensor-instrumented ‘smart socks’ (MPATIX) to improve management of distress and agitation for people with dementia
共同设计和评估传感器仪表“智能袜子”(MPATIX),以改善痴呆症患者的痛苦和躁动管理
- 批准号:
10055596 - 财政年份:2023
- 资助金额:
$ 44.14万 - 项目类别:
Collaborative R&D
Identifying pre-agitation biometric signature in dementia patients: A feasibility study
识别痴呆症患者的躁动前生物识别特征:可行性研究
- 批准号:
486612 - 财政年份:2022
- 资助金额:
$ 44.14万 - 项目类别:
Studentship Programs
Relationship between 4-Hydroxynonenal and Agitation Severity in Alzheimer’s Disease
4-羟基壬烯醛与阿尔茨海默病患者躁动严重程度之间的关系
- 批准号:
486589 - 财政年份:2022
- 资助金额:
$ 44.14万 - 项目类别:
Studentship Programs
Agitation in Alzheimer's Disease: Identification and Prediction Using Digital Behavioral Markers and Indoor Environmental Factors
阿尔茨海默病中的躁动:使用数字行为标记和室内环境因素进行识别和预测
- 批准号:
10404523 - 财政年份:2021
- 资助金额:
$ 44.14万 - 项目类别:
Clinical Decision Support Tool to Assess Risk and Prevent Agitation Events
用于评估风险和预防躁动事件的临床决策支持工具
- 批准号:
10683499 - 财政年份:2021
- 资助金额:
$ 44.14万 - 项目类别:
Development of Memesto, a wearable repetitive message and music therapy device that senses and reduces agitation in persons with AD/ADRD.
开发 Memesto,一种可穿戴式重复信息和音乐治疗设备,可感知并减少 AD/ADRD 患者的躁动。
- 批准号:
10322846 - 财政年份:2021
- 资助金额:
$ 44.14万 - 项目类别:
Agitation in Alzheimer's Disease: Identification and Prediction Using Digital Behavioral Markers and Indoor Environmental Factors
阿尔茨海默病中的躁动:使用数字行为标记和室内环境因素进行识别和预测
- 批准号:
10190522 - 财政年份:2021
- 资助金额:
$ 44.14万 - 项目类别:
Clinical Decision Support Tool to Assess Risk and Prevent Agitation Events
用于评估风险和预防躁动事件的临床决策支持工具
- 批准号:
10365272 - 财政年份:2021
- 资助金额:
$ 44.14万 - 项目类别:














{{item.name}}会员




