Deciphering Mechanisms of Mitochondrial Extrusion
破译线粒体挤压机制
基本信息
- 批准号:10368070
- 负责人:
- 金额:$ 7.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-12 至 2022-06-13
- 项目状态:已结题
- 来源:
- 关键词:AdultAgeAgingAlzheimer&aposs DiseaseAnimalsAreaAssessment toolBiologicalBiological ModelsBiologyCaenorhabditis elegansCalciumCandidate Disease GeneCell physiologyCellsCellular StressCessation of lifeCollectionComplementCrista ampullarisDataDegradation PathwayDissectionEnzymesEquilibriumFrequenciesFunctional disorderFutureGarbageGenesGeneticGenetic ScreeningGoalsHandHealthHomeostasisHumanImpairmentInvestigationLibrariesLifeLinkMaintenanceMeasuresMediatingMembraneMetabolicMetabolismMicroscopyMitochondriaModelingMolecularMolecular GeneticsMorphologyMotorNerve DegenerationNeurodegenerative DisordersNeuronsNeurosciencesOrganellesPathologicPathway interactionsPopulationProcessProductionProteinsProteomicsQuality ControlRNA InterferenceRNA interference screenReagentRegulationReportingResearchResolutionSignal TransductionStressStructureSubcutaneous TissueSuperoxidesSystemTechniquesTestingTimeTransportationVesicleWorkbasecareerclinical developmentcombatextracellularfunctional declinegenetic approachheteroplasmyimpaired capacityinfancyinsightinterestmisfolded proteinmitochondrial dysfunctionmouse modelneurotoxicnovelnovel strategiesoptogeneticsoxidationprotein aggregationresponsesegregationtool
项目摘要
Protein aggregation and mitochondrial dysfunction are key factors in aging and in neurodegenerative disease,
like Alzheimer’s disease. It is clear that full understanding of mechanisms that neurons employ to combat these
toxic threats will be critical for development of clinical neuroprotective strategies.
The Driscoll lab has found that C. elegans neurons can sort and throw out neuronal debris for remote
degradation in a novel “extracellular garbage elimination” strategy. We call such extrusions, which are large
~.4um membrane-surrounded vesicles that can include protein aggregates and mitochondria, “exophers”. We
speculate that trash expulsion complements known intracellular protein and organelle degradation pathways to
help maintain homeostasis. Consistent with this idea, neurons that extrude aggregate-filled exophers maintain
better functionality than neurons that did not produce exophers. We also speculate that the mechanism of
aggregate/mitochondrial hand-off to neighboring cells might constitute a conserved process relevant to the
spread of pathological materials in mammalian neurodegenerative disease. Advancing understanding of the
newly discovered exopher biology is thus likely to be of high impact in the neuroscience field.
My interests is focused on deciphering why and how mitochondria are selected for expulsion in exophers. Data
suggest that dysfunctional mitochondria may be preferentially extruded, but understanding of the conditions for
segregation of particular mitochondria into the exopher compartment, and the cellular machinery that mediates
this distinction is in its infancy. I will utilize the powerful molecular genetic tools of C. elegans to investigate
principal mechanisms that mark, move, and expel mitochondria within exophers.
My first aim is to define conditions that induce production of mitochondrial exophers and verify that
mitochondria are of poor health under such conditions. I will use genetic means to test a range of
mitochondrially-focused damage (heteroplasmy, cristae disruption, quality control impairment) to reveal the
types of mitochondrial dysfunction that provoke extrusion for remote degradation. I will also investigate the
details by which mitochondrial superoxide elevation increases the production of mito-exophers using genetics,
optogenetics tools, mitochondrial assessment tools and high resolution microscopy.
My second aim is to identify genes that are required for mitochondrial exopher production. I will use
RNAi approaches to test candidate gene sets (including some uniquely available to us based on proteomics of
candidate mammalian mitochondrial-loaded exophers). Time permitting, I will also participate in an unbiased
screen for genes that can modulate production of exophers. I will initiate a detailed mechanistic study of 1-2
conserved genes to contribute some of the first molecular understanding of the exopher-genesis pathway.
Given the profound importance of mitochondria in all of biology, especially in neurodegenerative disease and
aging, the work I plan should be significant in carving out a new research area highly relevant to human health.
蛋白质聚集和线粒体功能障碍是衰老和神经退行性疾病的关键因素,
比如老年痴呆症很明显,充分了解神经元用来对抗这些的机制,
毒性威胁对于临床神经保护策略的发展将是至关重要的。
Drivel实验室发现C.线虫的神经元可以分类并抛出神经元碎片,
在一个新的“细胞外垃圾消除”的战略降解。我们称这种挤压,
约0.4 μ m膜包围的囊泡,可包括蛋白质聚集体和线粒体,“外泌体”。我们
推测垃圾排出补充了已知细胞内蛋白质和细胞器降解途径,
帮助维持体内平衡。与这一观点相一致的是,挤压聚集填充的外泌体的神经元维持着
比不产生外泌体的神经元功能更好。我们还推测,
聚集体/线粒体向邻近细胞的传递可能构成了与细胞相关的保守过程。
哺乳动物神经退行性疾病中病理物质的传播。促进对
因此,新发现的外泌体生物学可能在神经科学领域具有很高的影响。
我的兴趣集中在破译为什么以及如何选择线粒体驱逐在exophers。数据
这表明功能障碍的线粒体可能会优先被挤出,但对线粒体形成条件的了解,
分离特定的线粒体进入外泌区室,以及介导
这一区分尚处于初期阶段。我将利用C. elegans来调查
标记、移动和排出线粒体的主要机制。
我的第一个目标是确定诱导线粒体外泌体产生的条件,并验证
线粒体在这种条件下健康状况不佳。我会用遗传学的方法测试一系列
聚焦性损伤(异质性、嵴破坏、质量控制损害),以揭示
线粒体功能障碍的类型,引起远程降解的挤出。我也会调查
使用遗传学的线粒体超氧化物升高增加线粒体外泌体产生的细节,
光遗传学工具、线粒体评估工具和高分辨率显微镜。
我的第二个目标是确定线粒体外泌体产生所需的基因。我会用
RNAi方法来测试候选基因集(包括一些基于蛋白质组学的独特可用基因集)。
候选的哺乳动物尿道负载的外泌体)。如果时间允许,我也将参加一个公正的
筛选可以调节外泌体产生的基因。我将开始详细的机械研究1-2
保守的基因,有助于一些第一个分子理解的外泌体发生途径。
考虑到线粒体在所有生物学中的重要性,特别是在神经退行性疾病中,
老龄化,我计划的工作应该对开拓一个与人类健康高度相关的新研究领域具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Cooper其他文献
Jason Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
- 批准号:
23K07844 - 财政年份:2023
- 资助金额:
$ 7.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Age-dependent Functional Changes in Skeletal Muscle CB1 Receptors by an in Vitro Model of Aging-related Muscle Atrophy
通过衰老相关性肌肉萎缩的体外模型分析骨骼肌 CB1 受体的年龄依赖性功能变化
- 批准号:
22KJ2960 - 财政年份:2023
- 资助金额:
$ 7.17万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Joint U.S.-Japan Measures for Aging and Dementia Derived from the Prevention of Age-Related and Noise-induced Hearing Loss
美日针对预防与年龄相关和噪声引起的听力损失而导致的老龄化和痴呆症联合措施
- 批准号:
23KK0156 - 财政年份:2023
- 资助金额:
$ 7.17万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
The Effects of Muscle Fatigability on Gait Instability in Aging and Age-Related Falls Risk
肌肉疲劳对衰老步态不稳定性和年龄相关跌倒风险的影响
- 批准号:
10677409 - 财政年份:2023
- 资助金额:
$ 7.17万 - 项目类别:
Characterizing gut physiology by age, frailty, and sex: assessing the role of the aging gut in "inflamm-aging"
按年龄、虚弱和性别表征肠道生理学特征:评估衰老肠道在“炎症衰老”中的作用
- 批准号:
497927 - 财政年份:2023
- 资助金额:
$ 7.17万 - 项目类别:
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
- 批准号:
10679287 - 财政年份:2023
- 资助金额:
$ 7.17万 - 项目类别:
Role of AGE/RAGEsignaling as a driver of pathological aging in the brain
AGE/RAGE信号传导作为大脑病理性衰老驱动因素的作用
- 批准号:
10836835 - 财政年份:2023
- 资助金额:
$ 7.17万 - 项目类别:
Elucidation of the protein kinase NLK-mediated aging mechanisms and treatment of age-related diseases
阐明蛋白激酶NLK介导的衰老机制及年龄相关疾病的治疗
- 批准号:
23K06378 - 财政年份:2023
- 资助金额:
$ 7.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Underlying mechanisms of age-related changes in ingestive behaviors: From the perspective of the aging brain and deterioration of the gustatory system.
与年龄相关的摄入行为变化的潜在机制:从大脑老化和味觉系统退化的角度来看。
- 批准号:
23K10845 - 财政年份:2023
- 资助金额:
$ 7.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeting Age-Activated Proinflammatory Chemokine Signaling by CCL2/11 to Enhance Skeletal Muscle Regeneration in Aging
通过 CCL2/11 靶向年龄激活的促炎趋化因子信号传导以增强衰老过程中的骨骼肌再生
- 批准号:
478877 - 财政年份:2023
- 资助金额:
$ 7.17万 - 项目类别:
Operating Grants