Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
基本信息
- 批准号:10371656
- 负责人:
- 金额:$ 9.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsArchitectureArtificial IntelligenceBasic ScienceBenchmarkingBioinformaticsBiologicalBiological AssayCatalogingChemicalsClinicalCommunitiesComplexComputational TechniqueComputer softwareComputing MethodologiesDataData AnalysesData ScientistDatabasesDevelopmentEcosystemEmerging TechnologiesEnsureEvaluationExpert SystemsExplosionExposure toFoundationsGenesGenetic ProgrammingGoalsGovernmentGraphHuman bodyInformaticsInfrastructureKinesiologyKnowledgeLearningLibrariesLinkMachine LearningMentorsMethodologyMethodsModelingModernizationNamesOntologyOutcomeOutcomes ResearchOutputPaperPathway interactionsPatternPhaseProcessProductivityProtocols documentationQuantitative Structure-Activity RelationshipReportingResearchResearch PersonnelResourcesRiskRisk AssessmentSemanticsSignal TransductionSourceStatistical ModelsStructureTechniquesTechnologyToxic effectToxicant exposureToxicologyTranslational ResearchValidationWorkXenobioticsadverse outcomebasebiomedical data scienceclinical effectclinical predictorscomputational toxicologycomputing resourcescostdata infrastructuredata resourcedata standardsdesigndiverse dataenvironmental toxicologyhands-on learningimprovedinformatics toolinnovationinterestknowledge graphlearning strategymethod developmentmultimodal datamultiple omicsnetwork architectureneural network architecturenew technologyopen datareal world applicationresponseside effectsmall moleculesuccesstooltoxicanttrend analysis
项目摘要
Project Summary/Abstract
This project proposes the development of new methods and data resources to integrate modern artificial intelligence (AI)
techniques into predictive toxicology, as well as the application of those methods and resources to generate new hypotheses linking putative toxicants to specific clinical outcomes. The recent explosion of publicly available chemical and biomedical data provides an immensely valuable resource for computational toxicologists, but existing techniques for learning
from these data perform poorly and fail to capture crucial patterns that span multiple levels of biological organization. For
example, the US FDA maintains a computational toxicology database cataloguing over 875 thousand chemicals of toxicologic concern, yet only a small handful of these have been characterized in terms of their downstream clinical effects.
However, informatics and machine learning (ML) provide specific tools that may solve this issue. This project focuses on
2 of those in particular: Graph machine learning (Graph ML) and semantic data analysis. Since both of these techniques
allow for the integration of information from multiple otherwise incongruent sources, they have the capacity to outperform
simpler traditional methods for pattern discovery, while increasing both inferential capacity and statistical power.
Our central hypothesis is that inductive learning on semantic graph data provides an effective means for generating
and validating translational and mechanistic conclusions from existing public toxicology data. In Aim 1 (K99), a new
data infrastructure—driven by a large, ontology-controlled graph database aggregating public toxicology data—will
be constructed and evaluated on several important tasks in computational toxicology. Together, these resources will
be named `ComptoxAI'. Aim 2 (K99) will develop and apply a graph machine learning strategy to predict new adverse
outcome pathways (AOPs) in the graph database. Importantly, this aim will use an automated machine learning (Auto
ML) approach to discover optimized neural network architectures for this prediction task in a data-driven manner. This
Auto ML strategy will use estimation of distribution algorithms (EDAs) to search for optimized network architectures
in a probabilistic manner. An expected side effect of the Auto ML approach is increased model interpretability over
existing applications of Graph ML. Aim 3 (R00) will use semantic data analysis via ontological inference to refine Aim 2's
model outputs into meaningful knowledge, proposing specific mechanistic explanations for the newly proposed AOPs.
Aim 4 (R00) will use the resources and outcomes of the previous Aims as a starting point to develop and disseminate
new open-source data standards, software resources, and research reporting protocols, with the goal of creating a
collaborative, cross-institutional research ecosystem for AI research in computational toxicology.
Beyond the methodological and infrastructural contributions of this work, successful completion of the Specific Aims
will yield a library of mechanistically-based hypotheses linking putative toxicants to specific clinical outcomes, addressing
a major need in predictive toxicology. In supporting the goals of the open science movement, all research outcomes
from this project—including papers, software, data, and other resources—will be made available for free public reuse.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Daniel Romano其他文献
Joseph Daniel Romano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Daniel Romano', 18)}}的其他基金
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 9.15万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 9.15万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 9.15万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别:
Standard Grant