Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
基本信息
- 批准号:10745593
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsArchitectureArtificial IntelligenceBasic ScienceBenchmarkingBioinformaticsBiologicalBiological AssayCatalogingChemicalsClinicalCommunitiesComplexComputational TechniqueComputer softwareComputing MethodologiesDataData AnalysesData ScientistDatabasesDevelopmentEcosystemEmerging TechnologiesEnsureEvaluationExpert SystemsExplosionExposure toGenesGenetic ProgrammingGoalsGraphHuman bodyInformaticsInstitutionKinesiologyKnowledgeLearningLibrariesLinkMachine LearningMentorsMethodologyMethodsModelingModernizationNamesOntologyOutcomeOutcomes ResearchOutputPaperPathway interactionsPatternPhaseProcessProductivityProtocols documentationQuantitative Structure-Activity RelationshipReportingResearchResearch PersonnelResourcesRiskRisk AssessmentSemanticsSignal TransductionSourceStatistical ModelsStructureTechniquesTechnologyToxic effectToxicant exposureToxicologyTranslation ProcessTranslational ResearchValidationWorkXenobioticsadverse outcomeaggregation databasebiomedical data scienceclinical effectclinical predictorscomputational toxicologycomputing resourcescostdata infrastructuredata resourcedata standardsdesigndiverse dataenvironmental toxicologygraph databasehands-on learningimprovedinformatics toolinnovationinterestknowledge graphknowledge translationlearning strategymethod developmentmultimodal datamultiple omicsnetwork architectureneural network architecturenew technologyopen datareal world applicationresponseside effectsmall moleculesuccesstooltoxicanttrend analysis
项目摘要
Project Summary/Abstract
This project proposes the development of new methods and data resources to integrate modern artificial intelligence (AI)
techniques into predictive toxicology, as well as the application of those methods and resources to generate new hypotheses linking putative toxicants to specific clinical outcomes. The recent explosion of publicly available chemical and biomedical data provides an immensely valuable resource for computational toxicologists, but existing techniques for learning
from these data perform poorly and fail to capture crucial patterns that span multiple levels of biological organization. For
example, the US FDA maintains a computational toxicology database cataloguing over 875 thousand chemicals of toxicologic concern, yet only a small handful of these have been characterized in terms of their downstream clinical effects.
However, informatics and machine learning (ML) provide specific tools that may solve this issue. This project focuses on
2 of those in particular: Graph machine learning (Graph ML) and semantic data analysis. Since both of these techniques
allow for the integration of information from multiple otherwise incongruent sources, they have the capacity to outperform
simpler traditional methods for pattern discovery, while increasing both inferential capacity and statistical power.
Our central hypothesis is that inductive learning on semantic graph data provides an effective means for generating
and validating translational and mechanistic conclusions from existing public toxicology data. In Aim 1 (K99), a new
data infrastructure—driven by a large, ontology-controlled graph database aggregating public toxicology data—will
be constructed and evaluated on several important tasks in computational toxicology. Together, these resources will
be named `ComptoxAI'. Aim 2 (K99) will develop and apply a graph machine learning strategy to predict new adverse
outcome pathways (AOPs) in the graph database. Importantly, this aim will use an automated machine learning (Auto
ML) approach to discover optimized neural network architectures for this prediction task in a data-driven manner. This
Auto ML strategy will use estimation of distribution algorithms (EDAs) to search for optimized network architectures
in a probabilistic manner. An expected side effect of the Auto ML approach is increased model interpretability over
existing applications of Graph ML. Aim 3 (R00) will use semantic data analysis via ontological inference to refine Aim 2's
model outputs into meaningful knowledge, proposing specific mechanistic explanations for the newly proposed AOPs.
Aim 4 (R00) will use the resources and outcomes of the previous Aims as a starting point to develop and disseminate
new open-source data standards, software resources, and research reporting protocols, with the goal of creating a
collaborative, cross-institutional research ecosystem for AI research in computational toxicology.
Beyond the methodological and infrastructural contributions of this work, successful completion of the Specific Aims
will yield a library of mechanistically-based hypotheses linking putative toxicants to specific clinical outcomes, addressing
a major need in predictive toxicology. In supporting the goals of the open science movement, all research outcomes
from this project—including papers, software, data, and other resources—will be made available for free public reuse.
项目摘要/摘要
该项目建议开发新方法和数据资源以整合现代人工智能(AI)
预测毒理学的技术以及这些方法和资源的应用来产生将推定毒物与特定临床结果联系起来的新假设。公开可用的化学和生物医学数据的最新爆炸为计算毒理学家提供了极有价值的资源,但是现有的学习技术
从这些数据中,表现不佳,无法捕获跨越多个生物组织的关键模式。为了
例如,美国FDA保持了一个计算毒理学数据库,该数据库对超过8.75千种化学物质的毒理学问题进行了分类,但仅根据其下游临床效应来表征其中的一小部分。
但是,信息和机器学习(ML)提供了可能解决此问题的特定工具。这个项目重点
特别是其中的2个:图机学习(图ML)和语义数据分析。由于这两种技术
允许从多个原本不一致的来源集成信息,它们具有胜过表现的能力
更简单的模式发现方法,同时增加了推论能力和统计能力。
我们的中心假设是,语义图数据上的归纳学习提供了一种有效的方法
并验证现有公共毒理学数据的翻译和机械结论。在AIM 1(K99)中,新的
数据基础架构(由大型,本体控制的图数据库汇总的公共毒理学数据驱动 - 将会
在计算毒理学中的几个重要任务中进行构建和评估。这些资源将在一起
被命名为“ comptoxai”。 AIM 2(K99)将制定并应用图形机学习策略来预测新的不利
图形数据库中的结果途径(AOPS)。重要的是,此目标将使用自动化机器学习(自动)
ML)以数据驱动方式发现此预测任务的优化神经网络体系结构的方法。这
自动ML策略将使用分销算法(EDA)的估计来搜索优化的网络体系结构
以概率的方式。自动ML方法的预期副作用是增加模型的可解释性
图ML的现有应用。 AIM 3(R00)将通过本体论推断使用语义数据分析以完善AIM 2
模型输出成有意义的知识,为新提出的AOP提出了特定的机械解释。
AIM 4(R00)将使用以前目标的资源和结果作为开发和传播的起点
新的开源数据标准,软件资源和研究报告协议,目的是创建一个
计算毒理学AI研究的合作,跨机构研究生态系统。
除了这项工作的方法论和基础设施贡献之外,成功完成了具体目标
将产生一个基于机械的假设,将推定毒物与特定临床结果联系起来,以解决
预测毒理学的主要需求。在支持开放科学运动的目标时,所有研究成果
从这个项目(包括论文,软件,数据和其他资源)中,将免费提供公开重复使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Daniel Romano其他文献
Joseph Daniel Romano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Daniel Romano', 18)}}的其他基金
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10371656 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Single viewpoint panoramic imaging technology for colonoscopy
肠镜单视点全景成像技术
- 批准号:
10580165 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: