Molecular mechanisms that regulate target cell sensitivity to Hedgehog morphogens
调节靶细胞对刺猬形态发生素敏感性的分子机制
基本信息
- 批准号:10373751
- 负责人:
- 金额:$ 8.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:Advisory CommitteesAreaBiochemistryBiologyCOVID-19CRISPR screenCell ProliferationCell surfaceCellsCiliaComplexCongenital AbnormalityCongenital Heart DefectsCore FacilityCuesDefectDevelopmentDevelopmental BiologyEmbryoEmbryonic DevelopmentEmbryonic HeartErinaceidaeEventFundingFutureGeneticHeartKnockout MiceKnowledgeLeftLigandsLightMalignant NeoplasmsMass Spectrum AnalysisMembraneMentorsMentorshipMicroscopyMolecularMusOrganPathway interactionsPatternPlayProteinsProteomicsRegulationResearchResearch PersonnelRoleSignal TransductionSitus InversusTissuesTrainingUniversitiesWorkcardiogenesiscareerextracellulargenome-widemembermorphogensmouse modelnovelprogramsprotein transportresponseskillssmoothened signaling pathwaytargeted treatmenttissue regenerationubiquitin ligase
项目摘要
PROJECT SUMMARY/ABSTRACT
Hedgehog (Hh) signaling is essential for the development of many tissues and organs. Hh ligands are
morphogens and thus direct cell fate decisions in a manner dependent on signaling strength. Precise
regulation of this signaling strength is critical for embryonic development, as even modest disruptions in the
signaling amplitude can result in severe birth defects. Many studies have shown that signaling strength is
influenced by both morphogen concentration and duration of morphogen exposure. However, an equally
important layer of regulation remains unrecognized and understudied: How does a target cell regulate its
sensitivity to a morphogen? The central focus of my postdoctoral research has been to study the mechanisms
that modulate a cell’s sensitivity to extracellular morphogens. Initially, I used genome-wide CRISPR screens to
discover three novel Hh signaling attenuators: Mosmo, Megf8, and Mgrn1. Through support from the K99, I
showed that these three proteins form a membrane-tethered ubiquitin ligase complex (the MMM complex) that
suppresses a cell’s sensitivity to Hh morphogens by clearing the Hh effector Smoothened (SMO) from the cell
surface and primary cilium. Using knockout mouse models, I also showed that the MMM complex is essential
for proper left-right patterning and embryonic heart development. Collectively, my work has begun to (1)
unravel a new mechanism through which target cells modify their responses to extracellular cues by altering
the landscape of proteins at the cell surface and (2) shed light on the mechanisms that underlie the complex
genetics of heterotaxy and congenital heart defects. COVID-19 related research restrictions and university
closures severely delayed my career plans and personal development. While my research progress reflects
the successful completion of Aims 2 and 3 in my original proposal, COVID-19 research restrictions severely
delayed progress on Aim1, which sought to determine the mechanism through which the MMM complex
regulates protein trafficking events. A funding extension would allow me to develop critical new skills in mass
spectrometry and advanced microscopy to understand how the MMM complex regulates the trafficking of
proteins to the cell surface and primary cilium. I will accomplish this with training from my mentor Dr. Rajat
Rohatgi (biochemistry), my co-mentor Dr. Tim Stearns (cilia biology), and Dr. Ryan Leib (the proteomics
director of the Stanford mass spectrometry core facility and member of my scientific advisory committee). A
funding extension would also allow me to further train under Dr. Cecilia Lo, to become more proficient at
analyzing embryonic mouse hearts for developmental defects. In summary, the training and mentorship I will
receive during the extended K99 period will equip me with the knowledge necessary to transition into the study
of the molecular mechanisms that contribute to heterotaxy and congenital heart defects. Ultimately, this
training will be critical in my transition into an independent investigator and help me establish a vibrant
research program in the fields of Cell Signaling and Developmental Biology.
项目概要/摘要
Hedgehog (Hh) 信号传导对于许多组织和器官的发育至关重要。 Hh 配体是
形态发生素,从而以依赖于信号强度的方式指导细胞命运决定。精确的
这种信号强度的调节对于胚胎发育至关重要,因为即使是轻微的破坏
信号幅度可能导致严重的出生缺陷。许多研究表明信号强度
受形态发生素浓度和形态发生素暴露时间的影响。然而,一个同样
重要的调控层仍未得到认识和研究:靶细胞如何调节其
对形态发生素的敏感性?我博士后研究的重点是研究其机制
调节细胞对细胞外形态发生素的敏感性。最初,我使用全基因组 CRISPR 筛选
发现三种新型 Hh 信号衰减器:Mosmo、Megf8 和 Mgrn1。通过K99的支持,我
表明这三种蛋白质形成膜束缚的泛素连接酶复合物(MMM 复合物),
通过清除细胞中的 Hh 效应子平滑 (SMO) 来抑制细胞对 Hh 形态发生素的敏感性
表面和初级纤毛。使用基因敲除小鼠模型,我还表明 MMM 复合物是必不可少的
用于正确的左右模式和胚胎心脏发育。总的来说,我的工作已经开始 (1)
揭示了一种新机制,通过该机制,靶细胞可以通过改变细胞外信号来改变其对细胞外信号的反应
细胞表面蛋白质的景观以及(2)揭示了该复合物背后的机制
异位性和先天性心脏缺陷的遗传学。 COVID-19 相关研究限制和大学
关闭严重延迟了我的职业计划和个人发展。虽然我的研究进展反映了
成功完成我最初提案中的目标 2 和 3,COVID-19 研究受到严格限制
推迟了 Aim1 的进展,该项目试图确定 MMM 复合物的机制
调节蛋白质贩运事件。资金延期将使我能够大规模开发关键的新技能
光谱测定法和先进的显微镜来了解 MMM 复合物如何调节
蛋白质到达细胞表面和初级纤毛。我将通过我的导师 Rajat 博士的培训来实现这一目标
Rohatgi(生物化学)、我的合作导师 Tim Stearns 博士(纤毛生物学)和 Ryan Leib 博士(蛋白质组学)
斯坦福大学质谱核心设施主任和我的科学顾问委员会成员)。一个
延期资助也让我能够在卢博士的指导下进一步接受培训,以更加熟练地掌握
分析小鼠胚胎心脏的发育缺陷。总而言之,我将接受的培训和指导
在延长的 K99 期间收到的课程将为我提供过渡到学习所需的知识
导致异位性和先天性心脏缺陷的分子机制。最终,这
培训对于我向独立调查员的过渡至关重要,并帮助我建立一个充满活力的
细胞信号传导和发育生物学领域的研究计划。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Kong其他文献
Jennifer Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Kong', 18)}}的其他基金
Molecular mechanisms that regulate target cell sensitivity to Hedgehog morphogens
调节靶细胞对刺猬形态发生素敏感性的分子机制
- 批准号:
10732871 - 财政年份:2019
- 资助金额:
$ 8.11万 - 项目类别:
Molecular mechanisms that regulate target cell sensitivity to Hedgehog morphogens
调节靶细胞对刺猬形态发生素敏感性的分子机制
- 批准号:
9926295 - 财政年份:2019
- 资助金额:
$ 8.11万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Standard Grant