3D Printed Engineered Living Materials for Drug Delivery
用于药物输送的 3D 打印工程活性材料
基本信息
- 批准号:10370976
- 负责人:
- 金额:$ 22.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-05 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAcrylatesAffectAlkaloidsAmericanAnti-Inflammatory AgentsBacteriaBerberineBiodegradationBiological AvailabilityBiological PreservationBiological ProcessBiomedical TechnologyCaco-2 CellsCellsClinicalColon CarcinomaColorectal CancerCrohn&aposs diseaseDevelopmentDevicesDiseaseDrug Delivery SystemsEngineeringEpithelialEscherichia coliExcisionFormulationGastrointestinal DiseasesGoalsGrowthHuman MicrobiomeHydrogelsImmobilizationIn SituIn VitroInflammationInflammatoryInflammatory Bowel DiseasesIntestinal DiseasesIntestinesIrritable Bowel SyndromeMalignant NeoplasmsMedical DeviceMicrobeModelingModulusOutcomePatientsPerformancePharmaceutical PreparationsPlant ResinsPolymersProductionProteinsPublic HealthPublishingResearchStentsSystemTechnologyTestingTherapeuticTherapeutic AgentsTimeTranslationsTreatment EfficacyUlcerative ColitisValidationVariantVisionWaterWeightWorkYeastsaqueousbasecytotoxicitydesigndigital modelsdrug productioneffective therapyexperimental studyglobular proteingut microbiomeimprovedin vitro Modelin vivolocal drug deliverymechanical propertiesmetabolic engineeringmicroorganismmonomernext generationpolymerizationpreventprogramsprototyperesponsesynthetic biologytreatment durationtumorvirtual
项目摘要
PROJECT SUMMARY
Traditional drug delivery platforms are limited by the amount of drug that can be loaded into the delivery system.
While drug loading capacity can reach 50% by weight for some polymeric systems, the time period over which
the delivery of the therapeutic can be sustained is often limited. In addition, the therapeutic efficacy of a local
drug delivery system is related to the local bioavailability of the active agent. Devices that bio-catalytically
produce the therapeutic in situ could thus provide more effective local delivery of the active drug and improve
therapeutic efficacy. The long-term vision for this program is to create the next-generation 3D printed in situ drug
production and delivery devices, including drug-eluting stents, microneedles, and patches, based on engineered
living materials (ELMs) for localized and sustained therapeutic delivery. ELMs are composites of microorganisms
incorporated within a polymeric matrix, wherein the cells maintain their viability and can be metabolically
engineered to produce a therapeutic compound. Despite the immense potential of ELMs for drug delivery
applications, the primary challenges to the deployment of ELMs as drug-eluting stents or patches to treat
intestinal diseases are that ELMs must (i) be processable into precise form factors (e.g., patient-specific stents)
with the requisite mechanical properties, (ii) biodegrade into non-cytotoxic components at predetermined rates,
and (iii) bio-catalytically produce and elute the therapeutic agent in situ for the lifetime of the device. The objective
of this proposal is to develop 3D printable resins that afford biodegradable hydrogel constructs with a tunable
stiffness, and to demonstrate the fabrication of a prototype ELM device for sustained delivery of a model
compound. In Aim 1, we will create aqueous resins with non-pathogenic E. coli Nissle 1917 (EcN) that can be
3D printed into hydrogel constructs using a commercially available 3D printer. We will formulate aqueous resins
comprised of soluble globular protein derivatives that can be co-polymerized with water-soluble acrylate
monomers upon photo-initiated polymerization. The mechanical properties of the ELM hydrogels (stiffness,
strength, and toughness) and rates of enzymatic degradation will be quantified for each resin formulation. In Aim
2, we will metabolically engineer non-pathogenic EcN to produce berberine as a model therapeutic compound.
We will further evaluate the cytotoxicity and epithelial integrity of Caco-2 cells in the presence of 3D printed
ELMs. As validation of these ELMs we will use an in vitro model to confirm the production and elution of berberine
from the 3D printed ELM by evaluating the Caco-2 response to proinflammatory stimulation. We envision these
3D printed ELMs to be used as devices for local drug delivery in the treatment of malignancies or inflammatory
diseases affecting the intestines. While our ELM platform is compatible with a broad array of microorganisms
that include yeast and bacteria, we have chosen to focus on engineered variants of E. coli Nissle 1917, a
commensal strain of bacteria common within the gut microbiome. Using a microorganism native to the human
microbiome may facilitate translation of our platform to treat intestinal diseases.
项目总结
传统的给药平台受到可以加载到给药系统中的药物数量的限制。
虽然某些聚合体系的载药量可以达到50%,但在此期间
治疗药物的可持续输送往往是有限的。此外,一种局部用药的疗效
药物释放系统与活性物质的局部生物利用度有关。生物催化的设备
因此,生产原位治疗性药物可以提供更有效的局部递送活性药物并改善
治疗效果。该项目的长期愿景是创造下一代3D打印的原位药物
生产和输送设备,包括药物洗脱支架、微针和贴片,基于
用于局部和持续治疗的生物材料(ELM)。榆树是微生物的复合体
结合在聚合物基质中,其中细胞保持其活力并可以代谢
被设计用来生产一种治疗化合物。尽管榆树在药物输送方面具有巨大的潜力
应用,ELMS作为药物洗脱支架或贴片治疗的主要挑战
肠道疾病是指ELM必须(I)可加工成精确的形状因素(例如,针对患者的支架)
具有必要的机械性能,(Ii)以预定的速度生物降解成非细胞毒性成分,
以及(Iii)在装置的整个生命周期内在原位生物催化生产和洗脱治疗剂。目标是
这项提议的目的是开发3D可打印树脂,提供可生物降解的水凝胶结构,并具有可调
刚性,并演示用于持续交付模型的ELM装置原型的制造
化合物。在目标1中,我们将创建含有非致病性大肠杆菌Nissle 1917(ECN)的水性树脂,该树脂可以
使用商用3D打印机将3D打印成水凝胶结构。我们将配制水性树脂
由可与水溶性丙烯酸酯共聚的可溶球状蛋白衍生物组成
单体的光引发聚合。研究了ELM水凝胶的力学性能(硬度、
强度和韧性)和酶降解速率将对每种树脂配方进行量化。在AIM
2、我们将代谢工程非致病ECN生产黄连素作为模型治疗化合物。
我们将进一步评估3D打印存在下Caco-2细胞的细胞毒性和上皮完整性
榆树。作为对这些ELMS的验证,我们将使用体外模型来确认黄连素的产生和洗脱
从3D打印的ELM通过评估Caco-2对促炎刺激的反应。我们设想了这些
3D打印ELMS将作为局部给药装置用于治疗恶性肿瘤或炎症性疾病
影响肠道的疾病。虽然我们的ELM平台与多种微生物兼容
包括酵母和细菌,我们选择将重点放在大肠杆菌Nissle 1917的工程变体上,
肠道微生物群中常见的共生菌株。使用一种人类特有的微生物
微生物组可能会促进我们治疗肠道疾病的平台的翻译。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alshakim Nelson其他文献
Alshakim Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alshakim Nelson', 18)}}的其他基金
3D Printed Engineered Living Materials for Drug Delivery
用于药物输送的 3D 打印工程活性材料
- 批准号:
10602505 - 财政年份:2022
- 资助金额:
$ 22.59万 - 项目类别:
Multivalent Well-Defined A,B-Alternating Polymers
多价明确定义的 A,B-交替聚合物
- 批准号:
6829984 - 财政年份:2004
- 资助金额:
$ 22.59万 - 项目类别:
Multivalent Well-Defined A,B-Alternating Polymers
多价明确定义的 A,B-交替聚合物
- 批准号:
6986132 - 财政年份:2004
- 资助金额:
$ 22.59万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 22.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 22.59万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 22.59万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 22.59万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 22.59万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 22.59万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 22.59万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 22.59万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 22.59万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 22.59万 - 项目类别:
Standard Grant














{{item.name}}会员




