3D Printed Engineered Living Materials for Drug Delivery
用于药物输送的 3D 打印工程活性材料
基本信息
- 批准号:10602505
- 负责人:
- 金额:$ 18.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-05 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAcrylatesAffectAlkaloidsAmericanAnti-Inflammatory AgentsBacteriaBerberineBiodegradationBiological AvailabilityBiological PreservationBiological ProcessBiomedical TechnologyCaco-2 CellsCellsClinicalColon CarcinomaColorectal CancerCrohn&aposs diseaseCytoprotectionDevelopmentDevicesDiseaseDrug Delivery SystemsEngineeringEpitheliumEscherichia coliExcisionFormulationGastrointestinal DiseasesGoalsGrowthHuman MicrobiomeHydrogelsImmobilizationIn SituIn VitroInflammationInflammatoryInflammatory Bowel DiseasesIntestinal DiseasesIntestinesIrritable Bowel SyndromeMalignant NeoplasmsMedical DeviceMicrobeModelingModulusNeedlesOutcomePatientsPerformancePharmaceutical PreparationsPlant ResinsPolymersProductionProteinsPublic HealthPublishingResearchStentsSystemTechnologyTestingTherapeuticTherapeutic AgentsTimeTranslationsTreatment EfficacyUlcerative ColitisValidationVariantWaterWeightWorkYeastsaqueouscopolymercytotoxicitydesigndigital modelsdrug productioneffective therapyexperimental studyfabricationglobular proteingut microbiomeimprovedin vitro Modelin vivolocal drug deliverymechanical propertiesmetabolic engineeringmicroorganismmonomernext generationpolymerizationpreventprogramsprototyperesponsesynthetic biologytreatment durationtumorvirtual
项目摘要
PROJECT SUMMARY
Traditional drug delivery platforms are limited by the amount of drug that can be loaded into the delivery system.
While drug loading capacity can reach 50% by weight for some polymeric systems, the time period over which
the delivery of the therapeutic can be sustained is often limited. In addition, the therapeutic efficacy of a local
drug delivery system is related to the local bioavailability of the active agent. Devices that bio-catalytically
produce the therapeutic in situ could thus provide more effective local delivery of the active drug and improve
therapeutic efficacy. The long-term vision for this program is to create the next-generation 3D printed in situ drug
production and delivery devices, including drug-eluting stents, microneedles, and patches, based on engineered
living materials (ELMs) for localized and sustained therapeutic delivery. ELMs are composites of microorganisms
incorporated within a polymeric matrix, wherein the cells maintain their viability and can be metabolically
engineered to produce a therapeutic compound. Despite the immense potential of ELMs for drug delivery
applications, the primary challenges to the deployment of ELMs as drug-eluting stents or patches to treat
intestinal diseases are that ELMs must (i) be processable into precise form factors (e.g., patient-specific stents)
with the requisite mechanical properties, (ii) biodegrade into non-cytotoxic components at predetermined rates,
and (iii) bio-catalytically produce and elute the therapeutic agent in situ for the lifetime of the device. The objective
of this proposal is to develop 3D printable resins that afford biodegradable hydrogel constructs with a tunable
stiffness, and to demonstrate the fabrication of a prototype ELM device for sustained delivery of a model
compound. In Aim 1, we will create aqueous resins with non-pathogenic E. coli Nissle 1917 (EcN) that can be
3D printed into hydrogel constructs using a commercially available 3D printer. We will formulate aqueous resins
comprised of soluble globular protein derivatives that can be co-polymerized with water-soluble acrylate
monomers upon photo-initiated polymerization. The mechanical properties of the ELM hydrogels (stiffness,
strength, and toughness) and rates of enzymatic degradation will be quantified for each resin formulation. In Aim
2, we will metabolically engineer non-pathogenic EcN to produce berberine as a model therapeutic compound.
We will further evaluate the cytotoxicity and epithelial integrity of Caco-2 cells in the presence of 3D printed
ELMs. As validation of these ELMs we will use an in vitro model to confirm the production and elution of berberine
from the 3D printed ELM by evaluating the Caco-2 response to proinflammatory stimulation. We envision these
3D printed ELMs to be used as devices for local drug delivery in the treatment of malignancies or inflammatory
diseases affecting the intestines. While our ELM platform is compatible with a broad array of microorganisms
that include yeast and bacteria, we have chosen to focus on engineered variants of E. coli Nissle 1917, a
commensal strain of bacteria common within the gut microbiome. Using a microorganism native to the human
microbiome may facilitate translation of our platform to treat intestinal diseases.
项目摘要
传统的药物输送平台受到可以加载到输送系统的药物量的限制。
对于某些聚合系统,药物加载能力可以达到50%的重量,但
可以维持治疗的交付通常受到限制。另外,局部的治疗功效
药物输送系统与活性剂的局部生物利用度有关。生物催化的设备
因此,产生原位治疗性可以提供活性药物的更有效的局部输送
治疗功效。该程序的长期愿景是创建下一代印刷的原位药物
基于工程的生产和递送设备,包括洗脱支架,微针和补丁
生物材料(ELMS)用于局部和持续的治疗性分娩。榆树是微生物的复合材料
掺入聚合物基质中,其中细胞保持其生存力,可以代谢
设计用于生产治疗化合物。尽管ELM具有巨大的药物输送潜力
申请,将榆树作为药物洗脱支架或补丁部署的主要挑战
肠道疾病是ELMS必须(i)可处理成精确的形式(例如,患者特定的支架)
具有必要的机械性能,(ii)以预定速率生物降解为非毒性成分,
(iii)生物催化物在设备的寿命中产生并在原位洗脱治疗剂。目标
该建议的是开发3D可打印树脂,这些树脂具有可调节的可生物降解水凝胶结构
刚度,并演示制造原型ELM设备以持续交付模型
化合物。在AIM 1中,我们将使用非致病性大肠杆菌Nissle 1917(ECN)创建水树脂,可以是
3D使用市售的3D打印机打印到水凝胶构造中。我们将制定水树脂
由可溶性球状蛋白衍生物组成,可以与水溶性丙烯酸酯共聚合
单体在光发射聚合时。 ELM水凝胶的机械性能(刚度,
每个树脂配方将量化强度,韧性)和酶促降解的速率。目标
2,我们将代谢设计非致病ECN,以产生berberine作为模型治疗化合物。
我们将进一步评估Caco-2细胞的细胞毒性和上皮完整性在3D印刷的情况下
榆树。作为对这些榆树的验证,我们将使用体外模型来确认Berberine的产生和洗脱
通过评估CACO-2对促炎刺激的反应,从3D打印的榆木中。我们设想这些
3D打印的榆树用作治疗恶性肿瘤或炎症的局部药物输送设备
影响肠道的疾病。虽然我们的ELM平台与广泛的微生物兼容
其中包括酵母和细菌,我们选择专注于大肠杆菌Nissle 1917,A的工程变体
肠道微生物组中常见的细菌的共生菌株。使用人类本地的微生物
微生物组可以促进我们平台的翻译以治疗肠道疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alshakim Nelson其他文献
Alshakim Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alshakim Nelson', 18)}}的其他基金
3D Printed Engineered Living Materials for Drug Delivery
用于药物输送的 3D 打印工程活性材料
- 批准号:
10370976 - 财政年份:2022
- 资助金额:
$ 18.17万 - 项目类别:
Multivalent Well-Defined A,B-Alternating Polymers
多价明确定义的 A,B-交替聚合物
- 批准号:
6829984 - 财政年份:2004
- 资助金额:
$ 18.17万 - 项目类别:
Multivalent Well-Defined A,B-Alternating Polymers
多价明确定义的 A,B-交替聚合物
- 批准号:
6986132 - 财政年份:2004
- 资助金额:
$ 18.17万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
- 批准号:
10749330 - 财政年份:2023
- 资助金额:
$ 18.17万 - 项目类别:
3D Printed Engineered Living Materials for Drug Delivery
用于药物输送的 3D 打印工程活性材料
- 批准号:
10370976 - 财政年份:2022
- 资助金额:
$ 18.17万 - 项目类别:
Magnetic Bronchoscope for Improved Pulmonary Access
用于改善肺部通路的磁力支气管镜
- 批准号:
10152980 - 财政年份:2021
- 资助金额:
$ 18.17万 - 项目类别:
Novel Dissipative Total Disc Replacement for Restoration of Natural Motion for Treatment of Degenerative Disc Disease
新型耗散性全椎间盘置换术恢复自然运动以治疗退行性椎间盘疾病
- 批准号:
10304800 - 财政年份:2021
- 资助金额:
$ 18.17万 - 项目类别:
Multi-material stereolithographic 3D-printing for prototyping Tissue Chips
用于制作组织芯片原型的多材料立体光刻 3D 打印
- 批准号:
10265548 - 财政年份:2020
- 资助金额:
$ 18.17万 - 项目类别: