Repair of Environmentally Induced Mitochondrial DNA Damage
环境引起的线粒体 DNA 损伤的修复
基本信息
- 批准号:10371212
- 负责人:
- 金额:$ 43.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acetyl Coenzyme AAcetylationAddressAgingAntioxidantsBase Excision RepairsBinding ProteinsBiological AvailabilityCadmiumCardiovascular DiseasesCell NucleusCellsCellular Metabolic ProcessChemicalsClustered Regularly Interspaced Short Palindromic RepeatsComplexDNADNA DamageDNA RepairDNA biosynthesisDNA copy numberDNA glycosylaseDNA metabolismDataDeacetylationDiseaseDyslipidemiasEndogenous FactorsEnvironmental Risk FactorEnzymesExogenous FactorsExposure toFree RadicalsGenesGeneticGenetic TranscriptionGenomic InstabilityHeavy MetalsHerbicidesHomeostasisHumanHydrogen PeroxideIn VitroIndividualInner mitochondrial membraneIonizing radiationKnowledgeLeftLesionLightLocationLysineMaintenanceMalignant NeoplasmsMass Spectrum AnalysisMeasuresMediatingMembrane PotentialsMetabolicMetabolic DiseasesMetabolic dysfunctionMetabolismMitochondriaMitochondrial DNAMitochondrial DiseasesMitochondrial ProteinsMolecularMonitorMorphologyMutagenesisMutationNamesNerve DegenerationNeurodegenerative DisordersNuclearNucleosomesObesityOxidative StressOxidesOxygen ConsumptionParaquatPathway interactionsPlayPolymerasePost-Translational RegulationPotassiumProcessProductionProtein AcetylationProteinsPublishingReactive Oxygen SpeciesRecombinantsRegulationResearchRespirationRoentgen RaysRoleSS DNA BPScientific Advances and AccomplishmentsSirtuinsSiteStressStructureTestingToxic Environmental SubstancesTranscriptional RegulationWorkX-Ray Crystallographybasecigarette smokeendonuclease VIIIenvironmental agentenzyme activityexperienceexperimental studyfactor Ahelicaseinsightknockout genelive cell imagingmitochondrial dysfunctionmitochondrial genomenovelnucleobaseoxidationoxidative damagepreferencepreventprotein complexprotein functionprotein protein interactionpublic health relevancerepairedresponsetoxicanttranscription factortreatment response
项目摘要
Project Summary/ Abstract
This proposal connects metabolic dysfunction to the regulation of repair following mitochondrial DNA
(mtDNA) damage caused by environmental toxicants. Environmental agents such as ionizing radiation,
chemicals found in cigarette smoke, herbicides, and heavy metals as well as normal cellular metabolic
processes, generate reactive oxygen species (ROS) in cells. ROS cause damage to cellular DNA, which if not
properly repaired, can trigger genome instability and the progression of metabolic diseases including
neurodegenerative disorders, aging, and cancer. MtDNA is more susceptible than its nuclear counterpart to
oxidative stress. The base excision repair (BER) pathway mends damaged bases in both nuclear and
mitochondrial compartments. Specialized enzymes called DNA glycosylases play a critical role in initializing
BER by excising damaged bases and mediating other aspects of the repair process via essential
protein:protein interactions.
We will determine the role and regulation of two DNA glycosylases, NEIL1 and NEIL2, in the repair of
mtDNA. We hypothesize that the NEIL enzymes form unique and distinct complexes with mitochondrial
proteins that are responsible for mtDNA replication and transcription including mitochondrial single-stranded
DNA binding protein (mtSSB), transcription factor A (TFAM), polymerase γ (Polγ), and the twinkle helicase.
Our central hypothesis is that complex formation between the NEIL enzymes and mitochondrial proteins drives
repair ahead of the replication/ transcription forks and is regulated via (de)acetylation. To address this
hypothesis, we will examine the functional interactions between the NEIL enzymes and the named
mitochondrial proteins via structure-driven analyses. Experiments using protein painting, small angle-X-ray
scattering, and X-ray crystallography will be used to determine the structures of complexes formed between
NEIL1, mtSSB, Polγ, and Twinkle as well as between NEIL2, TFAM, and Polγ. Next, we will test the impact of
(de)acetylation on NEIL function. High levels of acetyl-coenzyme A in the mitochondrion drives chemical
acetylation of proteins and our preliminary data suggests that NEIL2 is modified in this manner. Deacetylation
of the NEIL proteins by the NAD+-dependent sirtuin enzymes regulates protein function and will be explored
here. Cellular metabolism, mitochondrial dysfunction, and environmental toxicants that cause an increase in
ROS levels adversely impact the bioavailability of key metabolites (NAD+) required for deacetylation; a pivotal
aspect of our research. Lastly, we will study the localization of the NEIL enzymes under conditions of
environmentally induced oxidative stress and their impact on mitochondrial respiration, membrane potential,
and morphology. This will shed light on essential nuclear-mitochondrial crosstalk that results from oxidative
stress.
MtDNA repair is a budding field, with the NEIL enzymes placed at the forefront of the repair process by
our recent discoveries. By addressing critical questions of NEIL complex formation, regulation of activity, and
localization, the proposed studies will provide the molecular insight necessary for understanding how the repair
of mtDNA damage caused by environmental toxicants prevents mutagenesis and offers a novel connection
between mitochondrial metabolic function and mtDNA repair.
项目总结/摘要
这一提议将代谢功能障碍与线粒体DNA修复后的调节联系起来,
(mtDNA)的损伤。环境因素如电离辐射,
香烟烟雾中的化学物质,除草剂和重金属以及正常的细胞代谢
这些过程在细胞中产生活性氧(ROS)。ROS会破坏细胞DNA,
适当修复,可以触发基因组不稳定性和代谢疾病的进展,
神经退行性疾病、衰老和癌症。线粒体DNA比它的核对应物更容易受到
氧化应激碱基切除修复(BER)途径修复细胞核和细胞核中受损的碱基,
线粒体区室称为DNA糖基化酶的特殊酶在初始化
BER通过切除受损的基地和调解其他方面的修复过程中,通过必要的
蛋白质:蛋白质相互作用。
我们将确定两种DNA糖基化酶NEIL 1和NEIL 2在修复中的作用和调节。
线粒体DNA我们假设NEIL酶与线粒体形成独特的复合物,
负责线粒体DNA复制和转录的蛋白质,包括线粒体单链
DNA结合蛋白(mtSSB)、转录因子A(TFAM)、聚合酶γ(Polγ)和闪烁解旋酶。
我们的中心假设是NEIL酶和线粒体蛋白之间的复合物形成驱动了
在复制/转录叉之前进行修复,并通过(去)乙酰化进行调节。为了解决这个
假设,我们将研究NEIL酶和命名的
线粒体蛋白质通过结构驱动的分析。实验使用蛋白质绘画,小角度X射线
散射和X射线晶体学将被用来确定之间形成的复合物的结构
NEIL 1、mtSSB、Polγ和Twinkle之间以及NEIL 2、TFAM和Polγ之间的差异。接下来,我们将测试
(de)乙酰化对NEIL功能的影响。乙酰辅酶A的高水平的驱动化学
我们的初步数据表明NEIL 2是以这种方式修饰的。脱乙酰
NEIL蛋白的NAD+依赖性沉默调节蛋白质的功能,并将探讨
这里.细胞代谢,线粒体功能障碍,以及环境毒物,导致增加
ROS水平对脱乙酰化所需的关键代谢物(NAD+)的生物利用度产生不利影响;
我们研究的一个方面。最后,我们将研究NEIL酶的定位条件下,
环境诱导的氧化应激及其对线粒体呼吸,膜电位,
和形态学。这将阐明氧化应激导致的重要的核-线粒体串扰,
应力
线粒体DNA修复是一个新兴领域,NEIL酶被置于修复过程的最前沿,
我们最近的发现通过解决NEIL复合物的形成,活性调节,
定位,拟议的研究将提供必要的分子洞察力,了解如何修复
由环境毒物引起的线粒体DNA损伤可以防止诱变,
线粒体代谢功能和线粒体DNA修复之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aishwarya Prakash其他文献
Aishwarya Prakash的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aishwarya Prakash', 18)}}的其他基金
Repair of Environmentally Induced Mitochondrial DNA Damage
环境引起的线粒体 DNA 损伤的修复
- 批准号:
10597039 - 财政年份:2019
- 资助金额:
$ 43.12万 - 项目类别:
Repair of Environmentally and Endogenously Induced Mitochondrial-DNA Damage
环境和内源性诱导的线粒体 DNA 损伤的修复
- 批准号:
9250131 - 财政年份:2016
- 资助金额:
$ 43.12万 - 项目类别:
Repair of Environmentally and Endogenously Induced Mitochondrial-DNA Damage
环境和内源性诱导的线粒体 DNA 损伤的修复
- 批准号:
8762816 - 财政年份:2014
- 资助金额:
$ 43.12万 - 项目类别:
相似海外基金
Investigating the functions of histone acetylation in genome organization and leukemogenesis
研究组蛋白乙酰化在基因组组织和白血病发生中的功能
- 批准号:
EP/Y000331/1 - 财政年份:2023
- 资助金额:
$ 43.12万 - 项目类别:
Research Grant
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
- 批准号:
10677295 - 财政年份:2023
- 资助金额:
$ 43.12万 - 项目类别:
Novel roles of PDK2 in heart failure: Regulation of mitochondrial nuclear crosstalk via metabolic regulation and histone acetylation
PDK2 在心力衰竭中的新作用:通过代谢调节和组蛋白乙酰化调节线粒体核串扰
- 批准号:
10635599 - 财政年份:2023
- 资助金额:
$ 43.12万 - 项目类别:
Regulation of hepatic lysine N-acetylation by cysteine proximity due to alcohol toxicity
酒精毒性导致的半胱氨酸接近对肝脏赖氨酸 N-乙酰化的调节
- 批准号:
10752320 - 财政年份:2023
- 资助金额:
$ 43.12万 - 项目类别:
Histone Acetylation Regulates Microglial Innate Immune Memory
组蛋白乙酰化调节小胶质细胞先天免疫记忆
- 批准号:
478927 - 财政年份:2023
- 资助金额:
$ 43.12万 - 项目类别:
Operating Grants
Dysregulation of Histone Acetylation in Parkinson's Disease
帕金森病中组蛋白乙酰化的失调
- 批准号:
10855703 - 财政年份:2023
- 资助金额:
$ 43.12万 - 项目类别:
Obesity-related hypertension: the contribution of PPAR gamma acetylation and asprosin
肥胖相关高血压:PPAR γ 乙酰化和白脂素的贡献
- 批准号:
10654210 - 财政年份:2023
- 资助金额:
$ 43.12万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 43.12万 - 项目类别:
In vivo tracing of hepatic ethanol metabolism to histone acetylation: role of ACSS2 in alcohol-induced liver injury
肝脏乙醇代谢与组蛋白乙酰化的体内追踪:ACSS2 在酒精性肝损伤中的作用
- 批准号:
10667952 - 财政年份:2023
- 资助金额:
$ 43.12万 - 项目类别:
The function of TWIST1 acetylation in cell fate and tissue development
TWIST1 乙酰化在细胞命运和组织发育中的作用
- 批准号:
10726986 - 财政年份:2023
- 资助金额:
$ 43.12万 - 项目类别: