Investigating Pathophysiology of Glioma Stem Cells in 3D Bioprinted Vascularized Glioblastoma Model

研究 3D 生物打印血管化胶质母细胞瘤模型中胶质瘤干细胞的病理生理学

基本信息

  • 批准号:
    10373269
  • 负责人:
  • 金额:
    $ 21.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

SUMMARY Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults with a 5-year survival rate of less than 5%. GBMs are highly vascular and lethal brain tumors that display cellular hierarchies containing self- renewing and radiotherapy resistant tumorigenic glioma stem cells (GSCs). Understanding of the molecular regulation of GSCs in its native environment is critical for drug development. The available in vitro models suffer from the momentous hurdle of lack of functional blood vessels. Vasculature is not only essential for keeping the tumor alive but also creating a tumor microenvironment that balances the dynamics of GSCs, enabling self-renewal and differentiation. Therefore, there is a significant need for a preclinical tumor model to investigate the progression and the therapeutic resistance nature of GBM tumor, and thereby aid in drug development for the treatment of GBM. The primary goal of this exploratory (R21) proposal is to (a) develop clinically-relevant bioengineered 3D vascularized GBM organoid models and (b) utilize them to interrogate GBM pathobiology. Specifically, 3D bioprinting approach will be used to design perfusable vascular networks with embedded GSC organoids in a brain-like extracellular matrix. This printed structure will have the potential to provide physiologically similar biophysical and biochemical microenvironment with perivascular niches to facilitate maintenance of stemness cues as well as transformation of GSCs into differentiated glioma cells. As ablation of GSCs represents a potential therapeutic approach for treatment of GBM, these bioengineered GBM models can be utilized to understand the molecular regulation of GSCs in a microenvironment mimicking its native surroundings. It is envisioned that these 3D bioprinted vascularized GBM models will not only serve as a powerful platform to study GBM but will serve as invaluable tools for drug screens for precision medicine.
摘要 多形性胶质母细胞瘤(GBM)是成人最致命的原发脑肿瘤,5年生存率为 不到5%。基底节细胞瘤是一种高度血管性和致命性的脑肿瘤,其细胞层次结构包含自身 再生和抗放射治疗的成瘤性胶质瘤干细胞(GSCs)。对分子的理解 对GSCs在其本土环境中的调节对药物开发至关重要。可利用的体外模型 遭受缺乏功能血管的重大障碍。血管系统不仅对 保持肿瘤存活,但也创造了一个平衡GSCs动态的肿瘤微环境, 实现自我更新和差异化。因此,临床前肿瘤模型非常有必要 探讨基底膜肿瘤的进展和耐药特性,从而为药物治疗提供帮助 基底膜的治疗进展。此探索性(R21)提案的主要目标是(A)开发 临床相关的生物工程3D血管基底膜器官模型和(B)利用它们询问 GBM病理生物学。具体来说,将使用3D生物打印方法来设计可灌流的血管网络 在类脑细胞外基质中嵌入GSC有机化合物。这种印刷结构将具有潜在的 为生理上相似的生物物理和生化微环境提供血管周围的利基环境 促进干性线索的维持以及将GSCs转化为分化的胶质瘤细胞。AS GSCs的消融是治疗GBM的一种潜在的治疗方法,这些生物工程GBM 模型可以用来理解GSCs在模拟其微环境中的分子调控 原生环境。据设想,这些3D生物打印的血管化GBM模型不仅将用作 研究GBM的强大平台,但将成为精准医学药物筛选的宝贵工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irtisha Singh其他文献

Irtisha Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irtisha Singh', 18)}}的其他基金

Investigating Pathophysiology of Glioma Stem Cells in 3D Bioprinted Vascularized Glioblastoma Model
研究 3D 生物打印血管化胶质母细胞瘤模型中胶质瘤干细胞的病理生理学
  • 批准号:
    10545037
  • 财政年份:
    2022
  • 资助金额:
    $ 21.85万
  • 项目类别:

相似海外基金

Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
  • 批准号:
    24K21101
  • 财政年份:
    2024
  • 资助金额:
    $ 21.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
  • 批准号:
    24K11201
  • 财政年份:
    2024
  • 资助金额:
    $ 21.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
  • 批准号:
    24K11281
  • 财政年份:
    2024
  • 资助金额:
    $ 21.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
  • 批准号:
    EP/Z001145/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.85万
  • 项目类别:
    Fellowship
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
  • 批准号:
    2338890
  • 财政年份:
    2024
  • 资助金额:
    $ 21.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334777
  • 财政年份:
    2024
  • 资助金额:
    $ 21.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334775
  • 财政年份:
    2024
  • 资助金额:
    $ 21.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334776
  • 财政年份:
    2024
  • 资助金额:
    $ 21.85万
  • 项目类别:
    Continuing Grant
Cryo laser-ablation system (157+193nm) with 'triple-quad' plasma mass spectrometer, Cryo-LA-ICPMS/MS
带有“三重四极杆”等离子体质谱仪、Cryo-LA-ICPMS/MS 的冷冻激光烧蚀系统 (157 193nm)
  • 批准号:
    515081333
  • 财政年份:
    2023
  • 资助金额:
    $ 21.85万
  • 项目类别:
    Major Research Instrumentation
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
  • 批准号:
    2320040
  • 财政年份:
    2023
  • 资助金额:
    $ 21.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了