Investigating Pathophysiology of Glioma Stem Cells in 3D Bioprinted Vascularized Glioblastoma Model
研究 3D 生物打印血管化胶质母细胞瘤模型中胶质瘤干细胞的病理生理学
基本信息
- 批准号:10545037
- 负责人:
- 金额:$ 18.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAblationAdultAnimal ModelAreaAstrocytesBiochemicalBiocompatible MaterialsBiological ModelsBiologyBiomedical EngineeringBiophysicsBlood VesselsBrainBrain NeoplasmsCellsCollaborationsCuesDependenceDevelopmentDrug ScreeningEcologyEndothelial CellsEngineeringEnvironmentEpigenetic ProcessExhibitsExtracellular MatrixFailureFunctional disorderGene ExpressionGeneticGlioblastomaGliomaGoalsImmuneImmune systemImplantIn VitroLettersMaintenanceMalignant NeoplasmsModelingMolecularMolecular GeneticsNational Institute of Neurological Disorders and StrokeNatureNormal CellOrganoidsPathologicPatientsPericytesPhysiologicalPre-Clinical ModelPrimary Brain NeoplasmsPrintingProliferatingPublicationsRadiation therapyRegulationResearchRoleStructureSurvival RateSystemTherapeuticTissuesVascularizationbioinkbioprintingbody systemcell typeclinically relevantdensitydesigndrug developmenthigh-throughput drug screeninghuman diseasein vitro Modelin vivoinnovationmouse modelneoplastic cellnerve stem cellneuralnovel therapeuticspatient derived xenograft modelpre-clinicalprecision medicineprogramsself-renewalstem cellsstem-like cellstemnesstherapy developmenttherapy resistantthree-dimensional modelingtooltumortumor growthtumor microenvironmenttumorigenic
项目摘要
SUMMARY
Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults with a 5-year survival rate of
less than 5%. GBMs are highly vascular and lethal brain tumors that display cellular hierarchies containing self-
renewing and radiotherapy resistant tumorigenic glioma stem cells (GSCs). Understanding of the molecular
regulation of GSCs in its native environment is critical for drug development. The available in vitro models
suffer from the momentous hurdle of lack of functional blood vessels. Vasculature is not only essential for
keeping the tumor alive but also creating a tumor microenvironment that balances the dynamics of GSCs,
enabling self-renewal and differentiation. Therefore, there is a significant need for a preclinical tumor model to
investigate the progression and the therapeutic resistance nature of GBM tumor, and thereby aid in drug
development for the treatment of GBM. The primary goal of this exploratory (R21) proposal is to (a) develop
clinically-relevant bioengineered 3D vascularized GBM organoid models and (b) utilize them to interrogate
GBM pathobiology. Specifically, 3D bioprinting approach will be used to design perfusable vascular networks
with embedded GSC organoids in a brain-like extracellular matrix. This printed structure will have the potential
to provide physiologically similar biophysical and biochemical microenvironment with perivascular niches to
facilitate maintenance of stemness cues as well as transformation of GSCs into differentiated glioma cells. As
ablation of GSCs represents a potential therapeutic approach for treatment of GBM, these bioengineered GBM
models can be utilized to understand the molecular regulation of GSCs in a microenvironment mimicking its
native surroundings. It is envisioned that these 3D bioprinted vascularized GBM models will not only serve as a
powerful platform to study GBM but will serve as invaluable tools for drug screens for precision medicine.
总结
多形性胶质母细胞瘤(GBM)是成人中最致命的原发性脑肿瘤,5年生存率为
不到5%。GBM是高度血管化和致命的脑肿瘤,其显示包含自身免疫的细胞层次结构。
更新和放射治疗抗性的致瘤性胶质瘤干细胞(GSC)。对分子的理解
GSC在其天然环境中的调节对于药物开发至关重要。可用的体外模型
因为缺乏功能性血管而遭受重大障碍。血管系统不仅对
保持肿瘤存活,但也创造了一个平衡GSC动力学的肿瘤微环境,
使自我更新和分化成为可能。因此,非常需要临床前肿瘤模型,
研究GBM肿瘤的进展和治疗抗性性质,从而有助于药物治疗。
用于治疗GBM。本探索性(R21)提案的主要目标是:(a)开发
临床相关的生物工程3D血管化GBM类器官模型,和(B)利用它们来询问
GBM病理生物学。具体而言,3D生物打印方法将用于设计可灌注的血管网络
在脑样细胞外基质中嵌入GSC类器官。这种印刷结构将有可能
提供具有血管周围小生境的生理学上相似的生物物理和生物化学微环境,
促进干性线索的维持以及GSC转化为分化的神经胶质瘤细胞。作为
GSC的消融代表了用于治疗GBM的潜在治疗方法,这些生物工程GBM
模型可用于理解在模拟其微环境中GSC的分子调控。
原生环境据设想,这些3D生物打印的血管化GBM模型将不仅用作
强大的平台来研究GBM,但将作为药物筛选的宝贵工具,为精准医疗。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irtisha Singh其他文献
Irtisha Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irtisha Singh', 18)}}的其他基金
Investigating Pathophysiology of Glioma Stem Cells in 3D Bioprinted Vascularized Glioblastoma Model
研究 3D 生物打印血管化胶质母细胞瘤模型中胶质瘤干细胞的病理生理学
- 批准号:
10373269 - 财政年份:2022
- 资助金额:
$ 18.48万 - 项目类别:
相似海外基金
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
- 批准号:
24K11201 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
- 批准号:
24K11281 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334775 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
- 批准号:
EP/Z001145/1 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Fellowship
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334776 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
- 批准号:
2320040 - 财政年份:2023
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant