Synthesis and function of Queuosine in Bacteria
细菌中奎奥辛的合成及其功能
基本信息
- 批准号:10374065
- 负责人:
- 金额:$ 29.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-03-02 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acinetobacter baumanniiAnabolismAnticodonBacteriaBifidobacteriumBiochemicalBrevibacteriumCatabolismCell modelChemistryCompetenceCouplingDataDegradation PathwayDental cariesDevelopmentDietEnvironmentEnzymesEscherichia coliEukaryotaFamilyFamily StudyFoundationsGene ExpressionGene-ModifiedGenesGenetic TranscriptionGenomic approachGoalsGram-Positive BacteriaGrowthGuanineHumanKlebsiella pneumoniaeKnowledgeLaboratoriesLinkLongevityMetabolicMetabolismMethodsMicrobial BiofilmsMicronutrientsMiningModelingModificationMolecularNucleoside QOrganismOrthologous GeneOxidoreductasePathway interactionsPeptidesPhenotypePhysiologicalPhysiologyProcessProtein FamilyPsyche structureReactionRegulationResearchResourcesRibonucleosidesRoleRouteSourceStreptococcus mutansStructureSubstrate SpecificityTestingThermotoga maritimaTransfer RNATranslationsVirulenceVitaminsWorkbasecomparative genomicsgene synthesisgut microbiomegut microbiotamembermicrobiotanovelnucleobasenutritionoral microbiomeoral pathogenpathogenreconstructionstemtranscriptomics
项目摘要
Queuosine (Q) is the only tRNA modification that can be salvaged, linking nutrition to translation.
In eukaryotes salvage is the only Q synthesis route and the precursor base queuine (q) is provided
by the diet or the gut microflora and directly inserted in target tRNAs. Around 50% of the gut
microbiota model species are predicted to be auxotrophs and must salvage a Q precursor. In
general, bacterial Q salvage enzymes are very poorly characterized, particularly in Gram-positive
bacteria that are prevalent in the gut and oral microbiome. This project focuses on discovering
and characterizing Q salvage enzymes as well as novel Q synthesis and Q degradation enzymes
in bacteria associated with the human host. We will also explore in detail the physiological role of
Q in the major oral pathogen Streptococcus mutans as preliminary results suggest a role of Q
and/or Q precursors in biofilm formation, competence and virulence. The goal of Aim 1 is to
experimentally characterize two main families of transporters predicted to salvage Q precursors:
the YhhQ/COG1738 family and the Energy-Coupling Factor (ECF) substrate specificity families
(QueT/QtrT). Indeed, these families are not iso-functional, and members seem to diverge,
depending on the species, on the ability to transport different Q precursors. Aim 2 focuses on the
biochemical characterization of the novel Q synthesis enzyme QueH that catalyzes the last step
of biosynthesis through an unprecedented reaction. In both Aims 1 and 2, we will also hunt for
“missing” components in Q metabolism such as missing transporters in prevalent gut microbiome
bacteria such as Brevibacteria and potential Q catabolism genes. The final aim will explore the
role of Q synthesis genes in S. mutans testing the hypothesis that they could have important roles
in regulation of competence. The proposed research is significant because the microbiota is a
key source for the queuine micronutrient, hence fully characterizing the bacterial Q synthesis,
salvage and degradation pathways in human associated bacteria is a requirement to fully
understand and model the competition dynamics for this key resource. In addition, because of the
importance of S. mutans in dental caries progression, understanding the molecular basis for the
observed importance of Q synthesis genes in competence will increase our understanding of key
component of how this organism competes with others in its oral microbiome niche.
肌苷(Q)是唯一可以挽救的tRNA修饰,将营养与翻译联系起来。
在真核生物中,补救是唯一的Q合成途径,并提供了前体碱基精氨酸(q
通过饮食或肠道微生物菌群,并直接插入到目标tRNA中。大约50%的肠道
微生物群模型物种被预测为营养缺陷型,并且必须挽救Q前体。在
一般来说,细菌Q补救酶的特性非常差,特别是在革兰氏阳性菌中,
肠道和口腔微生物组中普遍存在的细菌。这个项目的重点是发现
以及表征Q补救酶以及新的Q合成酶和Q降解酶,
与人类宿主相关的细菌中。我们还将详细探讨
Q在口腔主要致病菌变形链球菌中的初步研究结果提示了Q的作用
和/或Q前体在生物膜形成、感受态和毒力中的作用。目标1的目标是
实验表征了预测挽救Q前体的两个主要转运蛋白家族:
YhhQ/COG 1738家族和能量偶联因子(ECF)底物特异性家族
(QueT/QtrT)。事实上,这些家庭不是等功能的,成员似乎是分歧的,
取决于种类,取决于运输不同Q前体的能力。目标2侧重于
催化最后一步的新型Q合成酶QueH的生物化学表征
通过一个前所未有的反应进行生物合成。在目标1和2中,我们还将寻找
Q代谢中的“缺失”组分,例如普遍肠道微生物组中缺失的转运蛋白
细菌如短杆菌属和潜在的Q催化剂基因。最后的目的将探讨
Q合成基因在S.变异体测试假设,他们可能有重要的作用,
监管权限。这项拟议的研究意义重大,因为微生物群是一种
是甜菜碱微量营养素的关键来源,因此充分表征了细菌Q合成,
在人类相关细菌中的补救和降解途径是充分
了解并模拟这一关键资源的竞争动态。此外,由于
S的重要性。牙齿龋齿发展中的变异,了解的分子基础,
观察到的Q合成基因在能力中的重要性将增加我们对关键的理解。
这种生物如何在其口腔微生物生态位中与其他生物竞争的组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valerie A de Crecy-Lagard其他文献
Valerie A de Crecy-Lagard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valerie A de Crecy-Lagard', 18)}}的其他基金
Pyridoxal 5'-phosphate homeostasis in Escherichia coli
大肠杆菌中吡哆醛 5-磷酸稳态
- 批准号:
9816234 - 财政年份:2019
- 资助金额:
$ 29.3万 - 项目类别:
Pyridoxal 5'-phosphate homeostasis in Escherichia coli
大肠杆菌中吡哆醛 5-磷酸稳态
- 批准号:
10213784 - 财政年份:2019
- 资助金额:
$ 29.3万 - 项目类别:
Pyridoxal 5'-phosphate homeostasis in Escherichia coli
大肠杆菌中吡哆醛 5-磷酸稳态
- 批准号:
10439656 - 财政年份:2019
- 资助金额:
$ 29.3万 - 项目类别:
Emerging Roles of Threonylcarbamoyladenosine in Translation & DNA Maintenance
苏氨酰氨基腺苷在翻译中的新作用
- 批准号:
8236921 - 财政年份:2006
- 资助金额:
$ 29.3万 - 项目类别:
Synthesis and function of Queuosine in Bacteria
细菌中奎奥辛的合成及其功能
- 批准号:
10590640 - 财政年份:2006
- 资助金额:
$ 29.3万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 29.3万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 29.3万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 29.3万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 29.3万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 29.3万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 29.3万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 29.3万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 29.3万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 29.3万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 29.3万 - 项目类别:
Discovery Early Career Researcher Award