Digital Phenotyping of Nonalcoholic Fatty Liver Disease
非酒精性脂肪肝的数字表型分析
基本信息
- 批准号:10376825
- 负责人:
- 金额:$ 11.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAlgorithmsArtificial IntelligenceCardiovascular DiseasesCessation of lifeCirrhosisComplexDataData AnalyticsData SetDecision ModelingDevelopmentDiagnosisDiseaseEarly DiagnosisEarly identificationElectronic Health RecordFutureGeneral PopulationGoalsHealthHealthcareHumanIndividualInterventionLifeLiverLiver diseasesLongevityMachine LearningMalignant NeoplasmsMethodologyMethodsMorbidity - disease rateObesityObesity EpidemicOnset of illnessOutcomePatient-Focused OutcomesPatientsPatternPhenotypePopulationPredictive FactorProbabilityProcessPublic HealthResearchResourcesRiskSubgroupTestingTimeTrainingUnited Statesbaseburden of illnesscare outcomeschronic liver diseaseclinical decision-makingclinical phenotypecohortcomorbiditydigitaldisorder riskfollow-uphealth dataimprovedimproved outcomeinnovationliver developmentliver transplantationmachine learning modelmortalitynon-alcoholic fatty liver diseasenovelpatient stratificationpopulation basedpopulation healthpredict clinical outcomepredictive modelingpreventrisk stratificationscreeningtooltraitunsupervised learning
项目摘要
1
2 PROJECT SUMMARY/ABSTRACT
3
4 One of the most critical gaps in management of nonalcoholic fatty liver disease (NAFLD) is the lack of effective
5 methods of early identification in the population. The objective of this study is to leverage data and analytics to
6 improve healthcare outcomes by early detection and risk stratification of NAFLD, before onset of liver-related
7 complications. Artificial intelligence applications in large electronic health records have the potential to identify
8 disease traits before onset of disease. The central hypothesis of this proposal is that targeted screening with
9 machine-learning models applied to large integrated healthcare datasets can identify individuals with NAFLD
10 and, more specifically, those with a progressive phenotype. We will test the central hypothesis in 2 specific
11 AIMs. First, we will train a machine learning model of NAFLD prediction using multiple longitudinal data points
12 of all health-care encounters of a well-characterized population-based cohort of individuals diagnosed with
13 NAFLD in reference to individuals without NAFLD from the general population. We hypothesize that
14 unsupervised machine learning can identify complex processes and patterns without a human's guidance and
15 discover early comorbidity clusters (“latent traits” present prior to NAFLD development) that reflect a phenotype
16 at risk to develop NAFLD later in life. Second, we will test and optimize the model for the prediction of patient
17 outcomes (development of cirrhosis, liver-related complications and death) in the NAFLD cohort. We
18 hypothesize that machine learning approaches could be used to further stratify patients into subgroups with
19 different disease trajectories, with the goal of identifying those individuals at risk of progressive NAFLD and
20 liver-related outcomes. The research proposed in this application is innovative because it expands the
21 analytical toolbox beyond conventional methods to identify individuals with NAFLD using all health-encounters
22 of a large, well-characterized population-based cohort with long follow-up. This proposal is significant because
23 it addresses a critical need of identification and management of the most prevalent chronic liver disease and
24 offers a practical solution to large scale implementation of screening and risk-stratification strategies using
25 routinely collected data. The ultimate goal of this proposal is to improve the population health in obesity-
26 associated diseases.
1
2 项目概要/摘要
3
4 非酒精性脂肪性肝病 (NAFLD) 治疗中最关键的差距之一是缺乏有效的治疗方法
人群早期识别的 5 种方法。本研究的目的是利用数据和分析
6 在肝脏相关疾病发生之前,通过早期发现 NAFLD 并对其进行风险分层,改善医疗保健结果
7 并发症。人工智能在大型电子健康记录中的应用有潜力识别
发病前的8种疾病特征。该提案的中心假设是有针对性的筛查
应用于大型综合医疗数据集的 9 种机器学习模型可以识别患有 NAFLD 的个体
10,更具体地说,是那些具有进行性表型的人。我们将在 2 个具体方面检验中心假设
11 个目标。首先,我们将使用多个纵向数据点训练 NAFLD 预测的机器学习模型
在一个基于人群的明确特征的被诊断患有此病的个体队列中,有 12 次就诊
13 NAFLD 指一般人群中没有 NAFLD 的个体。我们假设
14 无监督机器学习可以识别复杂的流程和模式,无需人类指导和
15 发现反映表型的早期合并症群(NAFLD 发展之前存在的“潜在特征”)
16 人在以后的生活中有患 NAFLD 的风险。其次,我们将测试和优化患者预测模型
NAFLD 队列中有 17 种结果(肝硬化的发展、肝脏相关并发症和死亡)。我们
18 假设机器学习方法可用于进一步将患者分为具有以下特征的亚组:
19 种不同的疾病轨迹,旨在识别那些有进展性 NAFLD 风险的个体
20 个与肝脏相关的结果。本申请中提出的研究具有创新性,因为它扩展了
超越传统方法的 21 个分析工具箱可利用所有健康状况来识别 NAFLD 患者
22 是一个大型、特征良好的基于人群的队列,并进行了长期随访。这个提议意义重大,因为
23 它解决了识别和管理最流行的慢性肝病和
24 为大规模实施筛查和风险分层策略提供了实用的解决方案,使用
25 例行收集的数据。该提案的最终目标是改善肥胖人群的健康——
26种相关疾病。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
It is time to expand the fatty liver disease community of practice.
- DOI:10.1097/hep.0000000000000411
- 发表时间:2023-11-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alina M Allen其他文献
WED-430 Best buys to diagnose and treat metabolic dysfunction-associated steatohepatitis among people living with diabetes type 2: a multicountry generalized cost-effectiveness analysis
WED - 430 用于诊断和治疗2型糖尿病患者中代谢功能障碍相关脂肪性肝炎的最佳选择:一项多国广义成本 - 效果分析
- DOI:
10.1016/s0168-8278(25)01508-9 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:33.000
- 作者:
Jeffrey Lazarus;Leire Agirre-Garrido;Luis Antonio Diaz;Pojsakorn Danpanichkul;Sokoine Kivuyo;Loreta Kondili;Hannes Hagström;Hirokazu Takahashi;Juan Manuel Pericàs;C Wendy Spearman;Claudia P. Oliveira;Cristiane Villela-Nogueira;Jörn M. Schattenberg;Emilie Toresson Grip;Naim Alkhouri;Andrea Marcellusi;Henry E Mark;Alina M Allen;Nathalie Leite;Hussain Alomar;Nicolai Brachowicz - 通讯作者:
Nicolai Brachowicz
Use of non-invasive diagnostic tools for metabolic dysfunction-associated steatohepatitis: A qualitative exploration of challenges and barriers.
使用非侵入性诊断工具治疗代谢功能障碍相关的脂肪性肝炎:挑战和障碍的定性探索。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Emmanuel A. Tsochatzis;L. Valenti;Maja Thiele;S. Péloquin;P. Lazure;M. H. Masson;Alina M Allen;J. Lazarus;Mazen Noureddin;M. Rinella;Frank Tacke;Suzanne Murray - 通讯作者:
Suzanne Murray
WED-263 A machine learning approach to identify patient features associated with metabolic dysfunction-associated steatohepatitis from the United Kingdom biobank
- DOI:
10.1016/s0168-8278(24)01598-8 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Jörn M Schattenberg;Amalia Gastaldelli;Harmeet Malhi;Alina M Allen;Mazen Noureddin;Umesh Karamchandani;Jonathon Romero;Peter Henstock;Birol Emir;Arun J Sanyal - 通讯作者:
Arun J Sanyal
Improved Prioritization of the Liver Transplant Waitlist: Weighing the Risks.
改进肝移植等候名单的优先顺序:权衡风险。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:6.2
- 作者:
J. Heimbach;Alina M Allen - 通讯作者:
Alina M Allen
WED-248 A four-country modelling study on doubling MASH diagnostic rates by 2027
- DOI:
10.1016/s0168-8278(24)01585-x - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Jeffrey V Lazarus;Henry E Mark;William Alazawi;Alina M Allen;Paul N Brennan;Chris D Byrne;Laurent Castera;Cyrielle Caussy;Kenneth Cusi;Martin M Grajower;Morten Faarbæk Mikkelstrup;Michael Roden;Frank Tacke;Mazen Noureddin - 通讯作者:
Mazen Noureddin
Alina M Allen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alina M Allen', 18)}}的其他基金
Digital Phenotyping of Nonalcoholic Fatty Liver Disease
非酒精性脂肪肝的数字表型分析
- 批准号:
10188162 - 财政年份:2021
- 资助金额:
$ 11.93万 - 项目类别:
Noninvasive detection of NASH by magnetic resonance elastography (MRE)
磁共振弹性成像 (MRE) 无创检测 NASH
- 批准号:
10301353 - 财政年份:2018
- 资助金额:
$ 11.93万 - 项目类别:
Noninvasive detection of NASH by magnetic resonance elastography (MRE)
磁共振弹性成像 (MRE) 无创检测 NASH
- 批准号:
10063520 - 财政年份:2018
- 资助金额:
$ 11.93万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 11.93万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 11.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 11.93万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)