Digital Phenotyping of Nonalcoholic Fatty Liver Disease

非酒精性脂肪肝的数字表型分析

基本信息

  • 批准号:
    10188162
  • 负责人:
  • 金额:
    $ 11.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

1 2 PROJECT SUMMARY/ABSTRACT 3 4 One of the most critical gaps in management of nonalcoholic fatty liver disease (NAFLD) is the lack of effective 5 methods of early identification in the population. The objective of this study is to leverage data and analytics to 6 improve healthcare outcomes by early detection and risk stratification of NAFLD, before onset of liver-related 7 complications. Artificial intelligence applications in large electronic health records have the potential to identify 8 disease traits before onset of disease. The central hypothesis of this proposal is that targeted screening with 9 machine-learning models applied to large integrated healthcare datasets can identify individuals with NAFLD 10 and, more specifically, those with a progressive phenotype. We will test the central hypothesis in 2 specific 11 AIMs. First, we will train a machine learning model of NAFLD prediction using multiple longitudinal data points 12 of all health-care encounters of a well-characterized population-based cohort of individuals diagnosed with 13 NAFLD in reference to individuals without NAFLD from the general population. We hypothesize that 14 unsupervised machine learning can identify complex processes and patterns without a human's guidance and 15 discover early comorbidity clusters (“latent traits” present prior to NAFLD development) that reflect a phenotype 16 at risk to develop NAFLD later in life. Second, we will test and optimize the model for the prediction of patient 17 outcomes (development of cirrhosis, liver-related complications and death) in the NAFLD cohort. We 18 hypothesize that machine learning approaches could be used to further stratify patients into subgroups with 19 different disease trajectories, with the goal of identifying those individuals at risk of progressive NAFLD and 20 liver-related outcomes. The research proposed in this application is innovative because it expands the 21 analytical toolbox beyond conventional methods to identify individuals with NAFLD using all health-encounters 22 of a large, well-characterized population-based cohort with long follow-up. This proposal is significant because 23 it addresses a critical need of identification and management of the most prevalent chronic liver disease and 24 offers a practical solution to large scale implementation of screening and risk-stratification strategies using 25 routinely collected data. The ultimate goal of this proposal is to improve the population health in obesity- 26 associated diseases.
1 2项目摘要/摘要 3. 4非酒精性脂肪性肝病(NAFLD)管理中最严重的缺陷之一是缺乏有效的 5人群早期识别方法。本研究的目标是利用数据和分析来 6在与肝脏相关的疾病发作之前,通过NAFLD的早期检测和风险分层来改善医疗结果 并发症7例。人工智能在大型电子健康记录中的应用具有识别 发病前的8个疾病性状。这项建议的中心假设是有针对性的筛查 应用于大型集成医疗数据集的9个机器学习模型可以识别患有非酒精性脂肪肝的个体 10,更具体地说,那些具有进行性表型的人。我们将在两个具体的例子中检验中心假设 11个目标。首先,我们将使用多个纵向数据点来训练NAFLD预测的机器学习模型 在以人群为基础的特征良好的队列中,被诊断为 13非酒精性脂肪肝是指一般人群中没有非酒精性脂肪肝的个人。我们假设 14无监督机器学习可以在没有人类指导的情况下识别复杂的过程和模式 15发现反映一种表型的早期共病簇(在NAFLD发展之前就存在的“潜在特征”) 16有可能在晚年患上非酒精性脂肪肝。其次,我们将对模型进行检验和优化,以进行患者预测 NAFLD队列中的17种结局(发展为肝硬变、与肝脏相关的并发症和死亡)。我们 18假设机器学习方法可以用来进一步将患者分成不同的亚组 19种不同的疾病轨迹,目的是识别那些有进展性NAFLD风险的人和 20个与肝脏相关的结果。本申请中提出的研究具有创新性,因为它扩展了 21个分析工具箱,超越传统方法,使用所有健康接触识别患有NAFLD的个体 22个以人口为基础的大型队列中的22人,并进行了长期随访。这项建议意义重大,因为 23它解决了确定和管理最普遍的慢性肝病和 24为大规模实施筛查和风险分层策略提供了实用的解决方案 25个常规收集的数据。这项建议的最终目标是改善肥胖人群的健康-- 伴发疾病26例。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alina M Allen其他文献

WED-430 Best buys to diagnose and treat metabolic dysfunction-associated steatohepatitis among people living with diabetes type 2: a multicountry generalized cost-effectiveness analysis
WED - 430 用于诊断和治疗2型糖尿病患者中代谢功能障碍相关脂肪性肝炎的最佳选择:一项多国广义成本 - 效果分析
  • DOI:
    10.1016/s0168-8278(25)01508-9
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    33.000
  • 作者:
    Jeffrey Lazarus;Leire Agirre-Garrido;Luis Antonio Diaz;Pojsakorn Danpanichkul;Sokoine Kivuyo;Loreta Kondili;Hannes Hagström;Hirokazu Takahashi;Juan Manuel Pericàs;C Wendy Spearman;Claudia P. Oliveira;Cristiane Villela-Nogueira;Jörn M. Schattenberg;Emilie Toresson Grip;Naim Alkhouri;Andrea Marcellusi;Henry E Mark;Alina M Allen;Nathalie Leite;Hussain Alomar;Nicolai Brachowicz
  • 通讯作者:
    Nicolai Brachowicz
Use of non-invasive diagnostic tools for metabolic dysfunction-associated steatohepatitis: A qualitative exploration of challenges and barriers.
使用非侵入性诊断工具治疗代谢功能障碍相关的脂肪性肝炎:挑战和障碍的定性探索。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emmanuel A. Tsochatzis;L. Valenti;Maja Thiele;S. Péloquin;P. Lazure;M. H. Masson;Alina M Allen;J. Lazarus;Mazen Noureddin;M. Rinella;Frank Tacke;Suzanne Murray
  • 通讯作者:
    Suzanne Murray
WED-263 A machine learning approach to identify patient features associated with metabolic dysfunction-associated steatohepatitis from the United Kingdom biobank
  • DOI:
    10.1016/s0168-8278(24)01598-8
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jörn M Schattenberg;Amalia Gastaldelli;Harmeet Malhi;Alina M Allen;Mazen Noureddin;Umesh Karamchandani;Jonathon Romero;Peter Henstock;Birol Emir;Arun J Sanyal
  • 通讯作者:
    Arun J Sanyal
Improved Prioritization of the Liver Transplant Waitlist: Weighing the Risks.
改进肝移植等候名单的优先顺序:权衡风险。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    J. Heimbach;Alina M Allen
  • 通讯作者:
    Alina M Allen
WED-248 A four-country modelling study on doubling MASH diagnostic rates by 2027
  • DOI:
    10.1016/s0168-8278(24)01585-x
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jeffrey V Lazarus;Henry E Mark;William Alazawi;Alina M Allen;Paul N Brennan;Chris D Byrne;Laurent Castera;Cyrielle Caussy;Kenneth Cusi;Martin M Grajower;Morten Faarbæk Mikkelstrup;Michael Roden;Frank Tacke;Mazen Noureddin
  • 通讯作者:
    Mazen Noureddin

Alina M Allen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alina M Allen', 18)}}的其他基金

Digital Phenotyping of Nonalcoholic Fatty Liver Disease
非酒精性脂肪肝的数字表型分析
  • 批准号:
    10376825
  • 财政年份:
    2021
  • 资助金额:
    $ 11.93万
  • 项目类别:
Noninvasive detection of NASH by magnetic resonance elastography (MRE)
磁共振弹性成像 (MRE) 无创检测 NASH
  • 批准号:
    10301353
  • 财政年份:
    2018
  • 资助金额:
    $ 11.93万
  • 项目类别:
Noninvasive detection of NASH by magnetic resonance elastography (MRE)
磁共振弹性成像 (MRE) 无创检测 NASH
  • 批准号:
    10063520
  • 财政年份:
    2018
  • 资助金额:
    $ 11.93万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
  • 批准号:
    2230829
  • 财政年份:
    2023
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了