Modulating Low-Frequency Cortical Population Dynamics to Augment Motor Function After Stroke
调节低频皮质群动态以增强中风后的运动功能
基本信息
- 批准号:10376037
- 负责人:
- 金额:$ 63.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimalsAreaBrainChronicDataDimensionsDistantElectric StimulationElectrophysiology (science)EngineeringFingersFrequenciesGenerationsGoalsHandHumanInjuryLesionLinkMedicineMethodsMotorMotor CortexMotor SkillsMovementNatureNeuronsNeurosciencesPerformancePhasePhysiologicalPopulation DynamicsPrimatesProcessRandomizedRattusRecoveryResearchResidual stateSensorySomatosensory CortexSpeedStrokeSurvivorsSystemTechniquesTestingTherapeuticTrainingUnited StatesUpper ExtremityWorkbasedesigndisabilitygrasphand dysfunctionimprovedin vivoinnovationmotor function recoverymotor impairmentmotor recoverynetwork modelsneural networkneurophysiologyneuroregulationnonhuman primatenovelpost strokerelating to nervous systemsensory cortexstereotypystroke modelstroke patientstroke survivortherapeutic target
项目摘要
PROJECT SUMMARY
Stroke is the leading cause of motor disability in the United States, with approximately 700,000 new cases per
year. Impaired hand and finger control are a leading cause of such disability. Despite advances in task-
specific training for the upper limb, a large number of stroke patients do not regain full function of their hand;
novel treatment methods are urgently required. We propose to use a systems neuroscience and `neural
engineering' framework that captures the dynamic interactions between neurons and the distributed motor
network to both characterize and develop novel neurophysiological based neuromodulation approaches to
enhance motor function. Studies in healthy animals support a framework for dynamic interactions between
local and distant areas through transient oscillations. Oscillations are defined by a frequency bandwidth, e.g.
motor areas are known to have task-related low-frequency oscillations (0.5-4 Hz). How the recovery process
affects neural activity and oscillatory dynamics in primates preforming dexterous tasks remains unknown?
Our recent studies in rats (Ramanathan et al., Nature Medicine 2018; Lemke et al., Nature Neuroscience,
2019) demonstrated that population dynamics linked to low-frequency oscillatory activity (0.5-4Hz “LFO”) are
essential for movement control, track spontaneous recovery and can serve as a target for modulation using
electrical stimulation. More specifically, cortical stimulation was found to both boost LFO power and augment
motor function. Essential translational steps involve testing whether this approach also works for gyrated
brains during the performance of dexterous tasks.
This proposal aims to use in vivo electrophysiological methods to model the network dynamics of recovery.
The underlying hypothesis is that synchronous LFO spike-field interactions in the perilesional cortex are
important for recovery and its modulation can augment dexterous motor function. Importantly, our preliminary
data provides strong support for our proposed research goals; we have found that low-frequency oscillatory
dynamics drive coordination of sensory and motor areas during recovery and that artificial low-frequency
electrical stimulation can boost dexterous function during recovery.
Completion of these aims will provide critical information for designing therapeutic approaches that specifically
target perilesional oscillatory activity with low frequency electrical stimulation. Focusing on targeted
neuromodulation of such dynamic network interactions represents a new direction that could transform our
ability to augment upper extremity function following stroke.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karunesh Ganguly其他文献
Karunesh Ganguly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karunesh Ganguly', 18)}}的其他基金
Detecting Movement Onset During Closed-Loop Stimulation Using A Hidden Markov Model.
使用隐马尔可夫模型检测闭环刺激期间的运动起始。
- 批准号:
10842105 - 财政年份:2023
- 资助金额:
$ 63.51万 - 项目类别:
Optimizing oscillatory epidural electrical stimulation to selectively increase task-related population dynamics in motor areas
优化振荡硬膜外电刺激以选择性地增加运动区域中与任务相关的群体动态
- 批准号:
10681335 - 财政年份:2020
- 资助金额:
$ 63.51万 - 项目类别:
Optimizing oscillatory epidural electrical stimulation to selectively increase task-related population dynamics in motor areas
优化振荡硬膜外电刺激以选择性地增加运动区域中与任务相关的群体动态
- 批准号:
10267682 - 财政年份:2020
- 资助金额:
$ 63.51万 - 项目类别:
Optimizing oscillatory epidural electrical stimulation to selectively increase task-related population dynamics in motor areas
优化振荡硬膜外电刺激以选择性地增加运动区域中与任务相关的群体动态
- 批准号:
10468122 - 财政年份:2020
- 资助金额:
$ 63.51万 - 项目类别:
Modulating Low-Frequency Cortical Population Dynamics to Augment Motor Function After Stroke
调节低频皮质群动态以增强中风后的运动功能
- 批准号:
10602448 - 财政年份:2020
- 资助金额:
$ 63.51万 - 项目类别:
Optimizing oscillatory epidural electrical stimulation to selectively increase task-related population dynamics in motor areas
优化振荡硬膜外电刺激以选择性地增加运动区域中与任务相关的群体动态
- 批准号:
10031331 - 财政年份:2020
- 资助金额:
$ 63.51万 - 项目类别:
ShEEP request for an Inscopix nVoke Integrated Imaging and Optogenetics System
ShEEP 请求 Inscopix nVoke 集成成像和光遗传学系统
- 批准号:
9795729 - 财政年份:2019
- 资助金额:
$ 63.51万 - 项目类别:
Optimizing peripheral stimulation parameters to modulate the sensorimotor cortex for post-stroke motor recovery
优化外周刺激参数以调节感觉运动皮层以实现中风后运动恢复
- 批准号:
9229152 - 财政年份:2016
- 资助金额:
$ 63.51万 - 项目类别:
Neurophysiological Basis for Enhancing Motor Recovery After Stroke
增强中风后运动恢复的神经生理学基础
- 批准号:
10543091 - 财政年份:2015
- 资助金额:
$ 63.51万 - 项目类别:
Neurophysiological Basis for Enhancing Motor Recovery After Stroke
增强中风后运动恢复的神经生理学基础
- 批准号:
10385691 - 财政年份:2015
- 资助金额:
$ 63.51万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 63.51万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 63.51万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 63.51万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 63.51万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 63.51万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 63.51万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 63.51万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 63.51万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 63.51万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 63.51万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)