Optimizing oscillatory epidural electrical stimulation to selectively increase task-related population dynamics in motor areas
优化振荡硬膜外电刺激以选择性地增加运动区域中与任务相关的群体动态
基本信息
- 批准号:10468122
- 负责人:
- 金额:$ 70.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAreaBasal GangliaBehaviorBrainCellsCephalicComplexComputer AnalysisConsensusCustomDataDeep Brain StimulationDimensionsDiseaseDorsalElectric StimulationElectrodesFrequenciesGoalsImpairmentJointsLeadLinkMeasuresMedicineMethodsModelingMotorMotor CortexMotor SkillsMovementNatureNeuronsNeurosciencesParkinson DiseasePerformancePhysiologicalPlayPopulation DynamicsPreparationRattusRecoveryRecovery of FunctionRoleSensorySleepSomatosensory CortexStrokeSurvivorsSynaptic TransmissionTarget PopulationsTechniquesTestingTherapeuticTimeUncertaintyUnited StatesWorkdesigndisabilitygraspimprovedinnovationmotor behaviormotor function recoverymotor recoveryneural modelneural patterningneuropsychiatric disorderneuroregulationnon rapid eye movementnonhuman primatenoninvasive brain stimulationorientation selectivitypost strokepreventrelating to nervous systemresponsesensory feedbacksimulationstroke recoverystroke trials
项目摘要
PROJECT SUMMARY
Stroke is the leading cause of motor disability in the United States. While brain stimulation to enhance motor
function after stroke has shown promise in small studies, two recent large stroke trials did not find evidence for
significant benefits. A key uncertainty is about how to exactly tailor brain stimulation to effectively modulate neural
dynamics associated with movement preparation and control. Our recent studies in rats (Ramanathan et al.,
Nature Medicine 2018; Lemke et al., Nature Neuroscience, 2019) demonstrated that population dynamics linked
to low-frequency oscillatory activity (0.5-4Hz “LFO”) are essential for movement control and can serve as a target
for modulation using electrical stimulation. More specifically, cortical stimulation was found to both boost LFO
power and augment motor function. We now also have substantial evidence in a non-human primate model
that such an approach can be effective in more complex brains. However, it is essential to further optimize the
delivery of such stimulation to specifically target cortical dynamics. We thus propose to optimize parameters for
epidural stimulation to selectively modulate population dynamics in the intact motor network. Our approach
entails simultaneous recording of single neurons in the non-human primate motor network along with electrical
stimulation using a customized “ring” of epidural cranial screw electrodes. Moreover, we will use computational
analysis to determine how task-related neural dynamics in a reach-to-grasp task are modulated by electrical
stimulation. More specifically, we will optimize and develop principles for large-scale electrical stimulation to
selectively enhance “neural modes” isolated to M1 or PMd or joint across both areas. This approach is built on
the growing consensus that motor networks perform computations through coordinated ensemble activity or
“neural modes”, i.e. patterns of neural covariation measured with dimensionality reduction methods. Activation
of neural modes (i.e. Neural Model Activation or NMA) appear to constitute building blocks for computations
underlying movement control. Our specific aims are: 1) Determine optimal ACS parameters that increases both
local and cross-area NMA between M1 and PMd during a reach-grasp task; 2) Determine optimal ACS
parameters that increases both local and cross-area NMA between M1 and S1 during a reach-grasp task; 3)
Determine parameters for ACS to enhance task NMA during time periods away from the task. Completion of
these aims will provide critical information for designing therapeutic stimulation that selectively targets population
dynamics in the distributed motor network. The information gained may also help improve methods for non-
invasive brain stimulation.
项目摘要
中风是美国运动残疾的主要原因。虽然大脑刺激可以增强运动
虽然在小型研究中显示出了中风后功能的希望,但最近的两项大型中风试验没有发现中风后功能恢复的证据。
重大利益。一个关键的不确定性是关于如何准确地调整大脑刺激以有效地调节神经元的功能。
与运动准备和控制相关的动力学。我们最近在大鼠中的研究(Ramanathan等人,
Nature Medicine 2018; Lemke等人,Nature Neuroscience,2019)表明,人口动态与
低频振荡活动(0.5- 4 Hz“LFO”)对于运动控制至关重要,可以作为目标
用于使用电刺激进行调制。更具体地说,皮层刺激被发现既提高LFO
增强运动功能我们现在在非人类灵长类动物模型中也有大量证据
这种方法在更复杂的大脑中也是有效的。然而,必须进一步优化
将这种刺激递送到特定目标皮质动力学。因此,我们建议优化参数,
硬膜外刺激以选择性地调节完整运动网络中的群体动力学。我们的方法
需要同时记录非人类灵长类动物运动网络中的单个神经元沿着电
使用定制的硬膜外颅骨螺旋电极“环”进行刺激。此外,我们将使用计算
分析,以确定如何在一个达到掌握任务的任务相关的神经动力学调制的电
刺激.更具体地说,我们将优化和开发大规模电刺激的原理,
选择性地增强与M1或PMd隔离的“神经模式”或跨两个区域的联合。这种方法建立在
越来越多的共识认为,运动网络通过协调的整体活动进行计算,
“神经模式”,即用降维方法测量的神经协变模式。激活
神经模式(即神经模型激活或NMA)似乎构成了计算的构建块
潜在的移动控制我们的具体目标是:1)确定最佳的ACS参数,
在伸手抓取任务期间M1和PMd之间的局部和跨区域NMA; 2)确定最佳ACS
在伸手抓握任务期间增加M1和S1之间的局部和跨区域NMA的参数; 3)
确定ACS的参数,以在任务之外的时间段内增强任务NMA。完成
这些目标将为设计选择性靶向人群的治疗刺激提供关键信息
分布式运动网络中的动力学。所获得的信息也可能有助于改进非-
侵入性脑刺激
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karunesh Ganguly其他文献
Karunesh Ganguly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karunesh Ganguly', 18)}}的其他基金
Detecting Movement Onset During Closed-Loop Stimulation Using A Hidden Markov Model.
使用隐马尔可夫模型检测闭环刺激期间的运动起始。
- 批准号:
10842105 - 财政年份:2023
- 资助金额:
$ 70.9万 - 项目类别:
Optimizing oscillatory epidural electrical stimulation to selectively increase task-related population dynamics in motor areas
优化振荡硬膜外电刺激以选择性地增加运动区域中与任务相关的群体动态
- 批准号:
10681335 - 财政年份:2020
- 资助金额:
$ 70.9万 - 项目类别:
Optimizing oscillatory epidural electrical stimulation to selectively increase task-related population dynamics in motor areas
优化振荡硬膜外电刺激以选择性地增加运动区域中与任务相关的群体动态
- 批准号:
10267682 - 财政年份:2020
- 资助金额:
$ 70.9万 - 项目类别:
Modulating Low-Frequency Cortical Population Dynamics to Augment Motor Function After Stroke
调节低频皮质群动态以增强中风后的运动功能
- 批准号:
10376037 - 财政年份:2020
- 资助金额:
$ 70.9万 - 项目类别:
Optimizing oscillatory epidural electrical stimulation to selectively increase task-related population dynamics in motor areas
优化振荡硬膜外电刺激以选择性地增加运动区域中与任务相关的群体动态
- 批准号:
10031331 - 财政年份:2020
- 资助金额:
$ 70.9万 - 项目类别:
Modulating Low-Frequency Cortical Population Dynamics to Augment Motor Function After Stroke
调节低频皮质群动态以增强中风后的运动功能
- 批准号:
10602448 - 财政年份:2020
- 资助金额:
$ 70.9万 - 项目类别:
ShEEP request for an Inscopix nVoke Integrated Imaging and Optogenetics System
ShEEP 请求 Inscopix nVoke 集成成像和光遗传学系统
- 批准号:
9795729 - 财政年份:2019
- 资助金额:
$ 70.9万 - 项目类别:
Optimizing peripheral stimulation parameters to modulate the sensorimotor cortex for post-stroke motor recovery
优化外周刺激参数以调节感觉运动皮层以实现中风后运动恢复
- 批准号:
9229152 - 财政年份:2016
- 资助金额:
$ 70.9万 - 项目类别:
Neurophysiological Basis for Enhancing Motor Recovery After Stroke
增强中风后运动恢复的神经生理学基础
- 批准号:
10543091 - 财政年份:2015
- 资助金额:
$ 70.9万 - 项目类别:
Neurophysiological Basis for Enhancing Motor Recovery After Stroke
增强中风后运动恢复的神经生理学基础
- 批准号:
10385691 - 财政年份:2015
- 资助金额:
$ 70.9万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 70.9万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 70.9万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 70.9万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 70.9万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 70.9万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 70.9万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 70.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 70.9万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 70.9万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 70.9万 - 项目类别:
Standard Grant