Ion channel dysfunction in small vessel disease of the brain

脑小血管疾病中的离子通道功能障碍

基本信息

  • 批准号:
    10376066
  • 负责人:
  • 金额:
    $ 50.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-15 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Cerebral blood flow (CBF) is exquisitely controlled to meet the diverse and ever-changing demands of active neurons. Blood flow into the brain is mediated by penetrating/parenchymal arterioles and hundreds of miles of capillaries, which enormously extend the territory of perfusion. Blood delivery to active neurons (functional hyperemia) is rapidly and precisely controlled through a process termed neurovascular coupling (NVC). We recently provided compelling evidence that brain capillaries act as a neural activity-sensing network, and therefore are much more than simple conduits for blood. This concept explains the rapid and coordinated delivery of blood to active neurons, demonstrating that brain capillary endothelial cells (cECs) are capable of initiating an electrical (hyperpolarizing) signal in response to neural activity that rapidly propagates upstream to cause dilation of feeding arterioles and locally increase blood flow. We have established the mechanistic basis for this electrical signal, showing that neuron- and/or astrocyte-derived potassium (K+) is the critical mediator and identifying the strong inward rectifier K+ channel, Kir2.1, as the key molecular player. We have recently discovered a second fundamental NVC mechanism based on calcium (Ca2+) signaling, which is initiated by Gq-protein coupled receptor signaling and is partly mediated by TRPV4 channels. Dynamic changes in membrane phosphatidylinositol 4,5-bisphosphate (PIP2) levels appear to control the balance between electrical and Ca2+ signaling. A major focus of our laboratory has been on the pathogenesis of Small Vessel Disease (SVD) of the brain, which is a major cause of stroke and dementia. Using a monogenic model of SVD (CADASIL) and our mechanistic insights into NVC, we discovered that SVD precipitates early defects in functional hyperemia, which we propose involve extracellular matrix changes and a loss of PIP2 activation of cEC Kir2.1 channels and suppression of TRPV4 channels. Importantly, we are able to rescue functional hyperemia in CADASIL through exogenous application of PIP2, suggesting a broad-spectrum approach for improving CBF control in disease. We have further found that hypertension, the major driver of sporadic SVDs, also leads to age-dependent deterioration of this major functional hyperemia mechanism. We propose to elucidate mechanisms for defective functional hyperemia in CADASIL (Aim 1) and hypertension (Aim 2), including common molecular intersections. A goal of this proposal is to create an integrated view of the impact of SVD on CBF regulation at molecular, biophysical, and computational-modeling levels by examining their operation in increasingly complex segments of the brain vasculature ex vivo, in vivo, and in silico.
项目摘要 脑血流量(CBF)是精心控制,以满足多样化和不断变化的需求,积极 神经元血液流入大脑是由穿透/实质小动脉和数百英里的血管介导的。 毛细血管,极大地扩展了灌注的范围。血液输送到活性神经元(功能性 充血)通过称为神经血管偶联(NVC)的过程被快速和精确地控制。我们 最近提供了令人信服的证据,证明大脑毛细血管充当神经活动传感网络, 因此不仅仅是简单的血液管道。这一概念解释了快速和协调的交付 这表明,脑毛细血管内皮细胞(cEC)能够启动一个新的神经元, 响应神经活动的电(超极化)信号,快速向上游传播以引起扩张 局部增加血流量我们已经建立了这种电气的机械基础, 信号,表明神经元和/或星形胶质细胞来源钾(K+)是关键介质,并确定 强内向整流K+通道Kir2.1作为关键分子参与者。我们最近发现了第二个 基本的NVC机制基于钙(Ca 2+)信号传导,其由Gq-蛋白偶联启动 受体信号传导,部分由TRPV 4通道介导。膜的动态变化 磷脂酰肌醇4,5-二磷酸(PIP 2)水平似乎控制电和Ca 2+之间的平衡 信号我们实验室的一个主要重点是小血管病(SVD)的发病机制, 大脑,这是中风和痴呆症的主要原因。使用SVD的单基因模型(CADASIL)和我们的 通过对NVC机制的深入研究,我们发现SVD会导致功能性充血的早期缺陷, 我们提出涉及细胞外基质的变化和cEC Kir2.1通道的PIP 2激活的丧失, 抑制TRPV 4通道。重要的是,我们能够通过以下方法挽救CADASIL中的功能性充血: PIP 2的外源性应用,表明用于改善疾病中CBF控制的广谱方法。 我们进一步发现,高血压是散发性SVD的主要驱动因素,也导致年龄依赖性SVD。 这种主要功能性充血机制的恶化。我们建议阐明缺陷的机制, CADASIL(Aim 1)和高血压(Aim 2)中的功能性充血,包括常见的分子交叉。 本提案的目标是从分子水平建立SVD对CBF调节影响的综合观点, 生物物理和计算建模水平,通过检查它们在日益复杂的环节中的运作, 脑血管系统的体外、体内和计算机模拟。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK T NELSON其他文献

MARK T NELSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK T NELSON', 18)}}的其他基金

Determining How Amyloid-β Fibril Polymorphism Influences Cellular Toxicity
确定淀粉样蛋白-β原纤维多态性如何影响细胞毒性
  • 批准号:
    10982804
  • 财政年份:
    2023
  • 资助金额:
    $ 50.45万
  • 项目类别:
Capillaries as a Sensory Web that Controls Cerebral Blood Flow in Health and Disease
毛细血管作为控制健康和疾病中脑血流的感觉网
  • 批准号:
    10306351
  • 财政年份:
    2019
  • 资助金额:
    $ 50.45万
  • 项目类别:
Capillaries as a Sensory Web that Controls Cerebral Blood Flow in Health and Disease
毛细血管作为控制健康和疾病中脑血流的感觉网
  • 批准号:
    10541111
  • 财政年份:
    2019
  • 资助金额:
    $ 50.45万
  • 项目类别:
Capillaries as a Sensory Web that Controls Cerebral Blood Flow in Health and Disease
毛细血管作为控制健康和疾病中脑血流的感觉网
  • 批准号:
    9434413
  • 财政年份:
    2019
  • 资助金额:
    $ 50.45万
  • 项目类别:
Ion channel dysfunction in small vessel disease of the brain
脑小血管疾病中的离子通道功能障碍
  • 批准号:
    9912206
  • 财政年份:
    2019
  • 资助金额:
    $ 50.45万
  • 项目类别:
Ion Channel Dysfunction in Small Vessel Disease of the Brain
脑小血管疾病中的离子通道功能障碍
  • 批准号:
    10596592
  • 财政年份:
    2019
  • 资助金额:
    $ 50.45万
  • 项目类别:
Regulations of Myoendothelial Function By Signaling Microdomains in Hypertension
高血压中信号微域对肌内皮功能的调节
  • 批准号:
    8894077
  • 财政年份:
    2014
  • 资助金额:
    $ 50.45万
  • 项目类别:
Regulations of myoendothelial function by signaling microdomains in hypertension
高血压中信号微结构域对肌内皮功能的调节
  • 批准号:
    8761552
  • 财政年份:
    2014
  • 资助金额:
    $ 50.45万
  • 项目类别:
Regulations of Myoendothelial Function By Signaling Microdomains in Hypertension
高血压中信号微域对肌内皮功能的调节
  • 批准号:
    9078803
  • 财政年份:
    2014
  • 资助金额:
    $ 50.45万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    7998939
  • 财政年份:
    2010
  • 资助金额:
    $ 50.45万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 50.45万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 50.45万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 50.45万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 50.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 50.45万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 50.45万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 50.45万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 50.45万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 50.45万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 50.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了