Capillaries as a Sensory Web that Controls Cerebral Blood Flow in Health and Disease
毛细血管作为控制健康和疾病中脑血流的感觉网
基本信息
- 批准号:10541111
- 负责人:
- 金额:$ 90.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:ArteriesAstrocytesBlood VesselsBlood capillariesBlood flowBrainBrain DiseasesCalciumCalcium SignalingCapillary Endothelial CellCerebrovascular CirculationCerebrovascular systemCommunicationComplexComputer ModelsCoupledDataDinoprostoneDiseaseEndotheliumEquilibriumG alpha q ProteinGoalsHealthInternetKineticsMediatingMediatorMembraneMetabolicMicrovascular DysfunctionMolecularNeuronsNitric OxideNutrientOxygenPerfusionPericytesPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhysiologicalPotassiumReceptor SignalingRegulationRelaxationResearchRoleSensorySignal TransductionSiteSystemTestingTimeVascular blood supplyarteriolebiophysical modelcerebral capillarycerebral microvasculaturecerebrovascularfeedingin silicoin vivoinsightinward rectifier potassium channelmolecular modelingneurotransmissionneurovascular couplingnoveloperationparenchymal arteriolesresponse
项目摘要
PROJECT SUMMARY
Neurons in the brain have limited energy reserves and thus rely on a “just-in-time” delivery strategy in which
active neurons signal to the brain microvasculature to increase regional cerebral blood flow (CBF), resupplying
nutrients and oxygen as well as removing toxic metabolites. Despite extensive study, the mechanisms
underlying the functional linkage between neuronal metabolic demand and vascular supply, termed
neurovascular coupling (NVC), remain poorly understood. Blood flow to the brain is mediated by parenchymal
arterioles and hundreds of miles of capillaries, which enormously extend the territory of perfusion. We recently
presented evidence supporting the concept that brain capillaries act as a neuronal activity-sensing network,
demonstrating that brain capillary endothelial cells (cECs) are capable of initiating an electrical
(hyperpolarizing) signal in response to neuronal activity that propagates upstream to cause dilation of feeding
arterioles and increase blood flow locally at the site of signal initiation. We have established the mechanistic
basis for this electrical signal, showing that neuron- and/or astrocyte-derived potassium (K+) is the critical
mediator and identifying the strong inward rectifier K+ channel, Kir2.1, as the key molecular player. We have
recently discovered that a second fundamental NVC mechanism based on calcium (Ca2+) signaling, with
distinct kinetics and regulatory features, also operates in brain capillaries, and can be initiated by the putative
NVC mediator prostaglandin E2 (PGE2). We have further found that a mechanism initiated by Gq-protein
coupled receptor signaling and mediated by dynamic changes in membrane phosphatidylinositol 4,5-
bisphosphate (PIP2) levels controls the balance between electrical and Ca signaling. Additional preliminary
2+
data support a role for gasotransmission via Ca2+-dependent endothelial nitric oxide signaling and pericyte-
mediated regulation of capillary blood flow in modulating NVC. The immediate goals of this proposal are to
create an integrated view of electrical, Ca2+ and related regulatory signaling mechanisms at molecular,
biophysical, and computational-modeling levels by examining their operation in increasingly complex segments
of the brain vasculature ex vivo, in vivo, and in silico. Ultimately, we propose to weave these research threads
together to create a systems-level view of physiological capillary-to-arteriole/pial artery signaling in the brain,
and test the concept that gradual degradation of this sensory web and the attendant progressive decay of
cerebrovascular function contributes to small vessel diseases of the brain.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK T NELSON其他文献
MARK T NELSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK T NELSON', 18)}}的其他基金
Determining How Amyloid-β Fibril Polymorphism Influences Cellular Toxicity
确定淀粉样蛋白-β原纤维多态性如何影响细胞毒性
- 批准号:
10982804 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
Capillaries as a Sensory Web that Controls Cerebral Blood Flow in Health and Disease
毛细血管作为控制健康和疾病中脑血流的感觉网
- 批准号:
10306351 - 财政年份:2019
- 资助金额:
$ 90.6万 - 项目类别:
Capillaries as a Sensory Web that Controls Cerebral Blood Flow in Health and Disease
毛细血管作为控制健康和疾病中脑血流的感觉网
- 批准号:
9434413 - 财政年份:2019
- 资助金额:
$ 90.6万 - 项目类别:
Ion Channel Dysfunction in Small Vessel Disease of the Brain
脑小血管疾病中的离子通道功能障碍
- 批准号:
10596592 - 财政年份:2019
- 资助金额:
$ 90.6万 - 项目类别:
Ion channel dysfunction in small vessel disease of the brain
脑小血管疾病中的离子通道功能障碍
- 批准号:
10376066 - 财政年份:2019
- 资助金额:
$ 90.6万 - 项目类别:
Ion channel dysfunction in small vessel disease of the brain
脑小血管疾病中的离子通道功能障碍
- 批准号:
9912206 - 财政年份:2019
- 资助金额:
$ 90.6万 - 项目类别:
Regulations of Myoendothelial Function By Signaling Microdomains in Hypertension
高血压中信号微域对肌内皮功能的调节
- 批准号:
8894077 - 财政年份:2014
- 资助金额:
$ 90.6万 - 项目类别:
Regulations of myoendothelial function by signaling microdomains in hypertension
高血压中信号微结构域对肌内皮功能的调节
- 批准号:
8761552 - 财政年份:2014
- 资助金额:
$ 90.6万 - 项目类别:
Regulations of Myoendothelial Function By Signaling Microdomains in Hypertension
高血压中信号微域对肌内皮功能的调节
- 批准号:
9078803 - 财政年份:2014
- 资助金额:
$ 90.6万 - 项目类别:
相似国自然基金
Ascl1介导Wnt/beta-catenin通路在TLE海马硬化中反应性Astrocytes异常增生的作用及调控机制
- 批准号:31760279
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The contribution of astrocytes in behavioral flexibility
星形胶质细胞对行为灵活性的贡献
- 批准号:
24K18245 - 财政年份:2024
- 资助金额:
$ 90.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
- 批准号:
10807864 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
- 批准号:
10670573 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
Astrocytes control the termination of oligodendrocyte precursor cell perivascular migration during CNS development
星形胶质细胞控制中枢神经系统发育过程中少突胶质细胞前体细胞血管周围迁移的终止
- 批准号:
10727537 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
Accelerating Functional Maturation of Human iPSC-Derived Astrocytes
加速人 iPSC 衍生的星形胶质细胞的功能成熟
- 批准号:
10699505 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
Defining cell type-specific functions for the selective autophagy receptor p62 in neurons and astrocytes
定义神经元和星形胶质细胞中选择性自噬受体 p62 的细胞类型特异性功能
- 批准号:
10676686 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
Multispectral Imaging of Neurons and Astrocytes: Revealing Spatiotemporal Organelle Phenotypes in Health and Neurodegeneration
神经元和星形胶质细胞的多光谱成像:揭示健康和神经退行性疾病中的时空细胞器表型
- 批准号:
10674346 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
The role of lateral orbitofrontal cortex astrocytes in alcohol drinking
外侧眶额皮质星形胶质细胞在饮酒中的作用
- 批准号:
10823447 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
Investigating the role of diazepam binding inhibitor (DBI) in astrocytes and neural circuit maturation
研究地西泮结合抑制剂 (DBI) 在星形胶质细胞和神经回路成熟中的作用
- 批准号:
10567723 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别: