TRD3 - Image Reconstruction
TRD3 - 图像重建
基本信息
- 批准号:10376734
- 负责人:
- 金额:$ 22.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAlgorithmsAnatomyBrain imagingCalibrationCardiacClinicalClinical ResearchDataData SetDatabasesDependenceDevelopmentDiffusionElementsExhibitsFormulationFour-dimensionalFourier TransformHumanImageJoint repairJointsLeadMachine LearningMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMeasurementMeasuresMethodsModelingMorphologic artifactsMotionNoisePerfusionPhasePhysiologicalPlayProtocols documentationRadialResearchResidual stateResolutionRoleRotationSamplingScanningSchemeSliceSystemTechniquesTechnologyTimeTrainingVariantbasecomputerized toolsconnectomeconvolutional neural networkcostdata spacedeep learninghigh resolution imagingimage reconstructionimaging systemimprovedmathematical modelmultidimensional datanovelnovel strategiesoptical sensorreconstructionresiliencerespiratorysensorsimulationspatiotemporaltemporal measurementusability
项目摘要
Project Summary/Abstract
Image reconstruction from raw measurements is an inverse problem of fundamental importance in MRI. The
basic formulation for such reconstructions involve a k-space sampled uniformly on a Cartesian grid at greater
than the Nyquist rate, which is Fourier transformed to generate the desired image. However, this acquisition-
reconstruction strategy is often difficult to perform in practical research and clinical settings, as it leads to long
scan times, necessitating trade-offs in spatial and temporal resolutions. This observation has led to the
development of multiple reconstruction strategies over the last few decades, including partial Fourier imaging,
parallel imaging, non-Cartesian acquisitions and compressed sensing, where the reconstruction goes beyond a
simple Fourier transform, and often involves careful mathematical modeling of the MR system and images. The
aforementioned developments aim to address a continuous need for faster imaging, improved resolutions and
robustness, both in clinical and research settings. However, as the existing methods reach the limits of
resolution and acceleration achievable in the presence of system and physiological limitations, new
reconstruction strategies are needed to improve image quality for various acquisition strategies.
In this TRD, we seek to develop new image reconstruction techniques for enabling fast high-resolution
acquisitions, improving noise resilience, allowing for different encoding strategies, while increasing robustness
to underlying physiological and system variations. Our developments for fast high-resolution imaging include
improved strategies for k-space interpolation reconstruction in Cartesian imaging, as well as new self-
calibrated techniques for three-dimensional non-Cartesian imaging. For the former, we extend the liner shift-
invariant convolutional interpolation approaches for reconstructing multi-coil data in two ways: i) Scan-specific
deep learning without training databases for non-linear estimation of missing k-space data, in simultaneous
multi-slice, parallel and partial Fourier imaging, ii) Region-specific shift-variant linear kernels for highly-
accelerated volumetric parallel imaging. For non-Cartesian acquisitions, our self-calibration is used to estimate
radius- and rotation-specific interpolation kernels, without additional ACS data. We also tackle the problem of
improving non-Fourier encoded acquisitions, such as spatiotemporal encoding, and devise fast matrix
sparsifying approaches to enable regularized reconstructions without high computational burden. To further
improve reconstruction fidelity in multi-dimensional acquisitions, we propose the local use of high-order tensor
models, along with an information theoretic approach for parameter-free regularization. Finally, we consider
imaging in the presence of physiological and system variations, such as motion and B0 inhomogeneities, which
are especially pronounced at ultrahigh field strengths, and develop a self-consistency based framework for
nonlinear inversion, which utilizes improved initialization from external sensors or sequence elements.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehmet Akcakaya其他文献
Mehmet Akcakaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehmet Akcakaya', 18)}}的其他基金
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
- 批准号:
10584324 - 财政年份:2023
- 资助金额:
$ 22.19万 - 项目类别:
Rapid Comprehensive Cardiac MRI Exam for Diagnosis of Coronary Artery Disease
快速综合心脏 MRI 检查诊断冠状动脉疾病
- 批准号:
10383694 - 财政年份:2020
- 资助金额:
$ 22.19万 - 项目类别:
Novel Quantitative MRI Techniques for the Assessment of Cardiac Fibrosis without Gadolinium Contrast
无需钆对比即可评估心脏纤维化的新型定量 MRI 技术
- 批准号:
10319011 - 财政年份:2020
- 资助金额:
$ 22.19万 - 项目类别:
Rapid Comprehensive Cardiac MRI Exam for Diagnosis of Coronary Artery Disease
快速综合心脏 MRI 检查诊断冠状动脉疾病
- 批准号:
10171902 - 财政年份:2020
- 资助金额:
$ 22.19万 - 项目类别:
Novel Quantitative MRI Techniques for the Assessment of Cardiac Fibrosis without Gadolinium Contrast
无需钆对比即可评估心脏纤维化的新型定量 MRI 技术
- 批准号:
9977670 - 财政年份:2020
- 资助金额:
$ 22.19万 - 项目类别:
Rapid Comprehensive Cardiac MRI Exam for Diagnosis of Coronary Artery Disease
快速综合心脏 MRI 检查诊断冠状动脉疾病
- 批准号:
10601056 - 财政年份:2020
- 资助金额:
$ 22.19万 - 项目类别:
Rapid Comprehensive Cardiac MRI Exam for Diagnosis of Coronary Artery Disease
快速综合心脏 MRI 检查诊断冠状动脉疾病
- 批准号:
10030978 - 财政年份:2020
- 资助金额:
$ 22.19万 - 项目类别:
Novel Accelerated Contrast-Enhanced High Resolution Coronary MRI
新型加速对比增强高分辨率冠状动脉 MRI
- 批准号:
8224036 - 财政年份:2012
- 资助金额:
$ 22.19万 - 项目类别:
Novel Accelerated Contrast-Enhanced High Resolution Coronary MRI
新型加速对比增强高分辨率冠状动脉 MRI
- 批准号:
8471770 - 财政年份:2012
- 资助金额:
$ 22.19万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 22.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)