Discovering genetic and hormonal mechanisms underlying diabetes risk from flies to humans
发现果蝇对人类糖尿病风险的遗传和激素机制
基本信息
- 批准号:10376197
- 负责人:
- 金额:$ 39.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AbbreviationsAddressAdipose tissueAdultAffectAgeBeta CellBiological AssayBiologyCRISPR/Cas technologyCandidate Disease GeneCarbohydratesCell physiologyCellsCellular biologyClustered Regularly Interspaced Short Palindromic RepeatsDataDevelopmentDevelopmental BiologyDiabetes MellitusDrosophila genusDrosophila melanogasterElementsEnteroendocrine CellEpitopesFishesG-Protein-Coupled ReceptorsGene TargetingGenesGeneticGenetic PolymorphismGenetic RiskGenetic TranscriptionGenetic studyGenomicsGlucagonGlucoseHealthHormonalHormonesHumanInsectaInsulinIslet CellIslets of LangerhansLiverMeasuresMetabolic DiseasesMetabolismMethodsModernizationMolecular GeneticsMusNeuromedin UNon-Insulin-Dependent Diabetes MellitusNucleotidesOrganOrganismOrthologous GeneOutputPatientsPhysiologicalPhysiologyPolypeptide HormonesProductionPropertyRegulationResearchRoleSignal TransductionSiteSourceStructure of beta Cell of isletSystemTestingTissue-Specific Gene ExpressionTissuesTrans-ActivatorsTranscriptTranslationsTransplantationTrehaloseVariantYeastsZinc Fingersage relatedbasecell typediabetes mellitus geneticsdiabetes riskdimerendocrine pancreas developmentexperienceflygain of functiongene functiongenetic architecturegenetic testinggenome wide association studygenome-widehomeodomainimprovedin vivoinnovationinsulin secretioninsulin-like peptideisletloss of functionneuromedin U receptornovelnovel strategiesrisk variantsmall hairpin RNAtooltranscription factortransgene expression
项目摘要
We propose to develop and use innovative in vivo and human islet cell systems to investigate the genetic basis of diabetes risk. Although dozens of loci and perhaps hundreds of positional-candidate genes, like the transcriptional regulators SIX3 and BCL11A, have been previously associated to increased diabetes risk by GWAS and other modern genome-scale findings, our understanding of the affected gene, impact on gene function, and impact on specific tissue(s) or cell-type(s) remains poor. Emerging data indicate that most of the common variant type 2 diabetes GWAS signals are driven by dysregulation of islet β-cells or α-cells. Current systems, including mice, have advanced our understanding of the properties of pancreatic β-cells and α-cells. However, diabetes research lacks in vivo systems to perform tissue-specific genetic loss- and gain-of-function studies on a scale or with the efficiency that could transform our understanding of diabetes risk genetics. Fortunately, based on our discoveries in the fruit fly Drosophila melanogaster, we have generated truly innovative in vivo genetic systems to discover with diabetes risk gene functions impacting insulin transcription, translation, processing, storage, secretion, and stability. Based on this workflow, we have identified several promising risk genes, including SIX3 and BCL11A, for complementary genetic studies in primary human islets. To investigate the function of prioritized human candidate diabetes-risk genes, we have created innovative methods permitting loss- and gain-of-function analysis in human primary β-cells. We have a strong scientific team with broad complementary expertise in human pancreatic islet biology and genetics, Drosophila genetics and physiology, pancreas and islet biology, developmental biology, and diabetes research. We have substantial experience in reliably procuring and using primary human islets for gene function studies. Here we propose to: (1) use powerful, innovative genetic and physiological assays in comprehensive in vivo studies to identify diabetes risk genes that regulate insulin biology and metabolism in Drosophila, and (2) use and develop quantitative assays for assessing cognate risk gene function in human islets. Together the proposed studies could transform understanding of functional diabetes genetics in human islets, and are therefore highly relevant to improving human health.
我们建议开发和使用创新的体内和人类胰岛细胞系统来研究糖尿病风险的遗传基础。尽管GWAS和其他现代基因组规模的发现已经将数十个基因座和数百个位置候选基因(如转录调节因子SIX3和BCL 11A)与糖尿病风险增加相关联,但我们对受影响基因的理解,对基因功能的影响以及对特定组织或细胞类型的影响仍然很差。新出现的数据表明,大多数常见的变异型2型糖尿病GWAS信号是由胰岛β细胞或α细胞的失调驱动的。目前的系统,包括小鼠,已经推进了我们对胰腺β细胞和α细胞特性的理解。然而,糖尿病研究缺乏体内系统来进行组织特异性遗传功能丧失和获得的研究,其规模或效率可以改变我们对糖尿病风险遗传学的理解。幸运的是,基于我们在果蝇中的发现,我们已经产生了真正创新的体内遗传系统,以发现影响胰岛素转录,翻译,加工,储存,分泌和稳定性的糖尿病风险基因功能。基于这个工作流程,我们已经确定了几个有前途的风险基因,包括SIX3和BCL 11A,用于原代人类胰岛的互补遗传研究。为了研究优先考虑的人类候选糖尿病风险基因的功能,我们创造了允许在人类原代β细胞中进行功能丧失和获得分析的创新方法。 我们拥有强大的科学团队,在人类胰岛生物学和遗传学、果蝇遗传学和生理学、胰腺和胰岛生物学、发育生物学和糖尿病研究方面具有广泛的互补专业知识。我们在可靠地获取和使用原代人类胰岛进行基因功能研究方面拥有丰富的经验。在此,我们建议:(1)在全面的体内研究中使用强大的、创新的遗传和生理学测定,以鉴定调节果蝇中胰岛素生物学和代谢的糖尿病风险基因,以及(2)使用和开发定量测定,以评估人类胰岛中同源风险基因的功能。这些拟议的研究可以改变对人类胰岛功能性糖尿病遗传学的理解,因此与改善人类健康高度相关。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila.
- DOI:10.1016/j.cmet.2021.05.018
- 发表时间:2021-07-06
- 期刊:
- 影响因子:29
- 作者:Kim SK;Tsao DD;Suh GSB;Miguel-Aliaga I
- 通讯作者:Miguel-Aliaga I
A genetic strategy to measure insulin signaling regulation and physiology in Drosophila.
- DOI:10.1371/journal.pgen.1010619
- 发表时间:2023-02
- 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
A LexAop > UAS > QUAS trimeric plasmid to generate inducible and interconvertible Drosophila overexpression transgenes.
- DOI:10.1038/s41598-022-07852-7
- 发表时间:2022-03-09
- 期刊:
- 影响因子:4.6
- 作者:Wendler F;Park S;Hill C;Galasso A;Chang KR;Awan I;Sudarikova Y;Bustamante-Sequeiros M;Liu S;Sung EY;Aisa-Bonoko G;Kim SK;Baena-Lopez LA
- 通讯作者:Baena-Lopez LA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seung K Kim其他文献
Seung K Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seung K Kim', 18)}}的其他基金
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
- 批准号:
10623306 - 财政年份:2020
- 资助金额:
$ 39.5万 - 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
- 批准号:
10228762 - 财政年份:2020
- 资助金额:
$ 39.5万 - 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
- 批准号:
10441477 - 财政年份:2020
- 资助金额:
$ 39.5万 - 项目类别:
Therapeutic targeting of human islets with recombinant regulatory T cells
用重组调节性 T 细胞治疗人类胰岛
- 批准号:
10018894 - 财政年份:2019
- 资助金额:
$ 39.5万 - 项目类别:
Therapeutic targeting of human islets with recombinant regulatory T cells
用重组调节性 T 细胞治疗人类胰岛
- 批准号:
10450831 - 财政年份:2019
- 资助金额:
$ 39.5万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Research Grant