Towards reliable and explainable models for anticipating ecological change
建立可靠且可解释的预测生态变化模型
基本信息
- 批准号:DE210101439
- 负责人:
- 金额:$ 31.31万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Early Career Researcher Award
- 财政年份:2021
- 资助国家:澳大利亚
- 起止时间:2021-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to develop a quantitative framework for multivariate ecological prediction. This will allow us to better anticipate how ecosystems respond to environmental change. Recent modelling advances now make it possible to use the complexity of community ecology data to deliver better predictions. The project intends to use long-term ecological datasets to build and test novel multivariate prediction models, using tick paralysis rates in Australian dogs as a case study. Expected outcomes are better tools for studying ecosystem change and new hypotheses about how ecological communities are shaped. Application of these models should provide significant benefits, such as prediction of paralysis tick burdens to improve risk mitigation.
本计画旨在发展多元生态预测之量化架构。这将使我们能够更好地预测生态系统如何应对环境变化。最近的建模进展现在可以使用社区生态数据的复杂性来提供更好的预测。该项目打算使用长期的生态数据集来建立和测试新的多变量预测模型,以澳大利亚狗的蜱麻痹率为案例研究。预期成果是研究生态系统变化的更好工具,也是关于生态群落如何形成的新假设。这些模型的应用应提供显着的好处,如预测瘫痪蜱负担,以改善风险缓解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr Nicholas Clark其他文献
Dr Nicholas Clark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 31.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Explainable AI recommendations for infectious disease management: providing clear, robust, and reliable communication to users
针对传染病管理的可解释人工智能建议:为用户提供清晰、稳健和可靠的沟通
- 批准号:
10073509 - 财政年份:2023
- 资助金额:
$ 31.31万 - 项目类别:
Grant for R&D
Conference: Toward Explainable, Reliable, and Sustainable Machine Learning for Signal and Data Science
会议:迈向信号和数据科学的可解释、可靠和可持续的机器学习
- 批准号:
2321063 - 财政年份:2023
- 资助金额:
$ 31.31万 - 项目类别:
Standard Grant
REXASI-PRO: REliable & eXplAinable Swarm Intelligence for People with Reduced mObility
REXASI-PRO:可靠
- 批准号:
10056683 - 财政年份:2022
- 资助金额:
$ 31.31万 - 项目类别:
EU-Funded
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
- 批准号:
RGPIN-2019-05071 - 财政年份:2022
- 资助金额:
$ 31.31万 - 项目类别:
Discovery Grants Program - Individual
Towards a Reliable and Explainable Health Monitoring and Caring System
建立可靠且可解释的健康监测和护理系统
- 批准号:
DE200101439 - 财政年份:2022
- 资助金额:
$ 31.31万 - 项目类别:
Discovery Early Career Researcher Award
Development of artificial intelligence assisted Raman microscopy for reliable and automated examination of urine sediment
开发人工智能辅助拉曼显微镜,用于可靠、自动化的尿沉渣检查
- 批准号:
21K18081 - 财政年份:2021
- 资助金额:
$ 31.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
- 批准号:
RGPIN-2019-05071 - 财政年份:2021
- 资助金额:
$ 31.31万 - 项目类别:
Discovery Grants Program - Individual
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
- 批准号:
RGPIN-2019-05071 - 财政年份:2020
- 资助金额:
$ 31.31万 - 项目类别:
Discovery Grants Program - Individual
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
- 批准号:
DGECR-2019-00434 - 财政年份:2019
- 资助金额:
$ 31.31万 - 项目类别:
Discovery Launch Supplement