Towards a Reliable and Explainable Health Monitoring and Caring System
建立可靠且可解释的健康监测和护理系统
基本信息
- 批准号:DE200101439
- 负责人:
- 金额:$ 29.42万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Early Career Researcher Award
- 财政年份:2022
- 资助国家:澳大利亚
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to unleash the power of deep learning on health monitoring and caring domain through a safe, reliable and explainable way. Its innovations lie on 1) developing a set of robust and explainable deep learning models that are guaranteed to be safe to complex environmental uncertainty; 2) designing an intelligent health monitoring and caring platform, powered by robust deep learning models, to better support the home-based health monitoring and caring for the elderly. The result will enable end-users to trust the decisions of deep learning models in safety-critical systems and significantly contribute to Australian aging society and national healthcare economy.
该项目旨在通过安全,可靠和可解释的方式释放深度学习在健康监测和护理领域的力量。它的创新在于1)开发一套强大且可解释的深度学习模型,保证对复杂的环境不确定性安全; 2)设计一个智能健康监测和护理平台,由强大的深度学习模型提供支持,以更好地支持家庭健康监测和老年人护理。这一结果将使最终用户能够信任安全关键系统中深度学习模型的决策,并为澳大利亚老龄化社会和国家医疗保健经济做出重大贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr Wenjie Ruan其他文献
Dr Wenjie Ruan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 29.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Explainable AI recommendations for infectious disease management: providing clear, robust, and reliable communication to users
针对传染病管理的可解释人工智能建议:为用户提供清晰、稳健和可靠的沟通
- 批准号:
10073509 - 财政年份:2023
- 资助金额:
$ 29.42万 - 项目类别:
Grant for R&D
Conference: Toward Explainable, Reliable, and Sustainable Machine Learning for Signal and Data Science
会议:迈向信号和数据科学的可解释、可靠和可持续的机器学习
- 批准号:
2321063 - 财政年份:2023
- 资助金额:
$ 29.42万 - 项目类别:
Standard Grant
REXASI-PRO: REliable & eXplAinable Swarm Intelligence for People with Reduced mObility
REXASI-PRO:可靠
- 批准号:
10056683 - 财政年份:2022
- 资助金额:
$ 29.42万 - 项目类别:
EU-Funded
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
- 批准号:
RGPIN-2019-05071 - 财政年份:2022
- 资助金额:
$ 29.42万 - 项目类别:
Discovery Grants Program - Individual
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
- 批准号:
RGPIN-2019-05071 - 财政年份:2021
- 资助金额:
$ 29.42万 - 项目类别:
Discovery Grants Program - Individual
Towards reliable and explainable models for anticipating ecological change
建立可靠且可解释的预测生态变化模型
- 批准号:
DE210101439 - 财政年份:2021
- 资助金额:
$ 29.42万 - 项目类别:
Discovery Early Career Researcher Award
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
- 批准号:
RGPIN-2019-05071 - 财政年份:2020
- 资助金额:
$ 29.42万 - 项目类别:
Discovery Grants Program - Individual
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
- 批准号:
DGECR-2019-00434 - 财政年份:2019
- 资助金额:
$ 29.42万 - 项目类别:
Discovery Launch Supplement
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
- 批准号:
RGPIN-2019-05071 - 财政年份:2019
- 资助金额:
$ 29.42万 - 项目类别:
Discovery Grants Program - Individual