Reliable and Explainable Recommender Systems for Efficient Software Development

用于高效软件开发的可靠且可解释的推荐系统

基本信息

  • 批准号:
    RGPIN-2019-05071
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Modern software development is complex, and the number of choices developers face, such as ways to implement a feature, is often overwhelming. Developers thus often spend an enormous amount of time determining the optimal choice. This problem worsens with the flood of information provided by an increasing number of software development support tools/platforms. To filter information and improve the efficiency of software development, software engineering (SE) recommender systems, which provide suggestions for information items (code, experts, etc.) that are most likely of interest to developers, have emerged. However, despite the increasing experimental performance of existing SE recommender systems, recent surveys reveal that developers are still hesitant to adopt data-driven recommender systems due to their unstable performance in practice and inability to explain the provided recommendations. The proposed research program will create reliable and explainable SE recommender systems to enable developers to trust and fully utilize the coming generation of artificial intelligence (AI) empowered software development tools.   A reliable SE recommender should perform consistently given an evolving recommendation context. However, it is not scalable for developers to implement dedicated versions of recommenders that are suitable for each specific context of use. As such, being context-aware and adaptive are essential to achieving reliable SE recommender systems. Existing context-aware SE recommenders are far from ideal as they ignore the abstraction of the context and are unable to adapt accordingly. To fill this gap, we will design a context interpretation component for each target recommendation task and an adapter in the recommendation model that can handle a broad scope of changes leveraging implicit and explicit feedback from users. To ensure reliable SE recommenders, we will also develop new methodologies to improve software data quality.   Most existing SE recommender systems are treated as black boxes because of their unclear working mechanisms, resulting in mistrust of the systems and the need to use a time-consuming trial-and-error process to deploy a high-performance recommender system. To solve this challenge and build explainable recommenders, we will identify expected explanation forms for SE recommendation tasks by analyzing developers' online behaviours and surveying practitioners and will design machine learning models that can provide the expected explanations automatically.   Under this program, 3 PhD, 3 MSc and 2 undergraduate students will be trained in managing large software datasets and building intelligence tools to facilitate efficient software development. The program will benefit the rapidly-growing information technology industry by providing effective, reliable and explainable automation solutions for software development, thereby enhancing Canada's leadership in building an AI-empowered software development environment.
现代软件开发是复杂的,开发人员面临的选择数量往往是压倒性的,例如实现功能的方式。因此,开发人员通常会花费大量时间来确定最佳选择。随着越来越多的软件开发支持工具/平台提供的信息泛滥,这个问题变得更加严重。为了过滤信息和提高软件开发的效率,软件工程(SE)推荐系统为信息项(代码、专家等)提供建议。开发人员最有可能感兴趣的东西已经出现了。然而,尽管现有SE推荐系统的实验性能不断提高,但最近的调查显示,由于数据驱动的推荐系统在实践中性能不稳定,并且无法解释所提供的推荐,开发人员仍然对采用数据驱动的推荐系统犹豫不决。拟议的研究计划将创建可靠和可解释的SE推荐系统,使开发人员能够信任并充分利用下一代人工智能(AI)支持的软件开发工具。*在不断变化的推荐环境下,可靠的SE推荐者应该始终如一地执行。然而,对于开发人员来说,实现适用于每个特定使用环境的专用版本的推荐器是不可伸缩的。因此,上下文感知和自适应对于实现可靠的SE推荐系统至关重要。现有的上下文感知SE推荐器远远不理想,因为它们忽略了上下文的抽象,无法相应地进行调整。为了填补这一空白,我们将为每个目标推荐任务设计一个上下文解释组件,并在推荐模型中设计一个适配器,该适配器可以利用用户的隐式和显式反馈来处理广泛的更改。为了确保可靠的SE推荐者,我们还将开发新的方法来提高软件数据质量。*大多数现有的SE推荐系统被视为黑匣子,因为它们的工作机制不清楚,导致对系统的不信任,以及需要使用耗时的反复试验过程来部署高性能的推荐系统。为了解决这一挑战,构建可解释的推荐器,我们将通过分析开发者的在线行为和对从业者的调查,确定SE推荐任务的预期解释形式,并将设计能够自动提供预期解释的机器学习模型。*根据该计划,3名博士、3名硕士和2名本科生将接受管理大型软件数据集和构建智能工具以促进高效软件开发的培训。该计划将通过为软件开发提供有效、可靠和可解释的自动化解决方案,使快速增长的信息技术行业受益,从而加强加拿大在构建人工智能支持的软件开发环境方面的领先地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tian, Yuan其他文献

PPSDT: A Novel Privacy-Preserving Single Decision Tree Algorithm for Clinical Decision-Support Systems Using IoT Devices
  • DOI:
    10.3390/s19010142
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Alabdulkarim, Alia;Al-Rodhaan, Mznah;Tian, Yuan
  • 通讯作者:
    Tian, Yuan
Antiphospholipid Antibodies Increase the Risk of Fetal Growth Restriction: A Systematic Meta-Analysis.
  • DOI:
    10.1155/2022/4308470
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Xu, Jinfeng;Chen, Daijuan;Tian, Yuan;Wang, Xiaodong;Peng, Bing
  • 通讯作者:
    Peng, Bing
Diagnosing hereditary cancer predisposition in men with prostate cancer
  • DOI:
    10.1038/s41436-020-0830-5
  • 发表时间:
    2020-05-22
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Pritzlaff, Mary;Tian, Yuan;Helfand, Brian T.
  • 通讯作者:
    Helfand, Brian T.
SGLT2 inhibitors attenuate nephrin loss and enhance TGF-β(1) secretion in type 2 diabetes patients with albuminuria: a randomized clinical trial.
  • DOI:
    10.1038/s41598-022-19988-7
  • 发表时间:
    2022-09-20
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Tian, Yuan;Chen, Xiao-min;Liang, Xian-ming;Wu, Xiao-bin;Yao, Chun-meng
  • 通讯作者:
    Yao, Chun-meng
Rationalization of Microstructure Heterogeneity in INCONEL 718 Builds Made by the Direct Laser Additive Manufacturing Process

Tian, Yuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tian, Yuan', 18)}}的其他基金

Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
  • 批准号:
    RGPIN-2019-05071
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
  • 批准号:
    RGPIN-2019-05071
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
  • 批准号:
    DGECR-2019-00434
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
  • 批准号:
    RGPIN-2019-05071
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Oil Sands Tailings Project
油砂尾矿项目
  • 批准号:
    469069-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)

相似海外基金

Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Linkage Projects
Extraction and Use of Highly Explainable and Transferable Indicators for AI in Education
高度可解释和可转移的人工智能教育指标的提取和使用
  • 批准号:
    23K25698
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
  • 批准号:
    24K20848
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Z000262/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
ICF: Using Explainable Artificial Intelligence to predict future stroke using routine historical investigations
ICF:使用可解释的人工智能通过常规历史调查来预测未来中风
  • 批准号:
    MR/Y503472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
Explainable AI (XAI): A Creative Copilot for Interior Designers
可解释的人工智能(XAI):室内设计师的创意副驾驶
  • 批准号:
    10092978
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Collaborative R&D
KEEN - Knowledge-driven Explainable Misinformation Detection for Trustworthy Computational Social Systems
KEEN - 知识驱动的可解释错误信息检测,用于可信赖的计算社会系统
  • 批准号:
    EP/Y015894/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Fellowship
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Y03743X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collAboRative Multi-Objective design of explaiNable, faIr and privaCy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和保护隐私的人工智能的人类引导协作多目标设计
  • 批准号:
    EP/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了