Bioinspired antifouling and thromboresistant polymers for blood-contacting interfaces
用于血液接触界面的仿生防污和抗血栓聚合物
基本信息
- 批准号:10377491
- 负责人:
- 金额:$ 35.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-20 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdsorptionAnimalsAntibioticsAnticoagulationArtificial OrgansBacteriaBacterial InfectionsBiocompatible MaterialsBloodBlood PlateletsBlood VesselsBlood-Borne PathogensCatheter-related bloodstream infectionCathetersCellsCessation of lifeChronicClinicalCoagulation ProcessComplexConsciousDataDevicesEmbolismExhibitsExposure toFibrinFibrinogenFluorocarbonsFormulationGenerationsGoalsHealth Care CostsHealthcare IndustryHeparinHourImmobilizationIn VitroIndividualIndwelling CatheterInfectionInfection preventionInfusion proceduresIntensive Care UnitsKlebsiella pneumoniaeLaboratoriesLeadLifeLiquid substanceLocal Anti-Infective AgentsMeasuresMedicalMethodsMicrobeMicrobial BiofilmsModelingModificationN-acetylpenicillamineNitric OxideNitric Oxide DonorsObstructionOryctolagus cuniculusPatient CarePatientsPeripheralPlatelet ActivationPlayPolymersPolyurethanesPreventionPropertyProteinsPseudomonas aeruginosaResearch Project GrantsResistanceRiskS-nitro-N-acetylpenicillamineSafetySiliconesSiloxanesStaphylococcus aureusStaphylococcus epidermidisSterilizationSurfaceTechnologyTestingThrombosisThrombusTranslationsUnited StatesVascular Endothelial CellVenousWorkanalytical methodantimicrobialbaseclinical applicationclinical developmentclinical translationearly phase clinical trialhemocompatibilityimplantable deviceimprovedin vitro Bioassaynovelplatelet functionpreventsuccess
项目摘要
Project Summary/Abstract
Currently, clinical applications of intravascular catheters suffer from major challenges: 1) platelet activation and
surface-induced thrombosis, 2) biofouling of surfaces with proteins and bacteria, and 3) infection. Thrombus
formation can further lead to obstruction of blood vessels, catheter malfunction, or even life-threatening situations
such as embolism. Bacterial contamination of catheters causes more than 28,000 deaths per year in the United
States, as well as costing the healthcare industry a staggering $2.3 billion. Commercial catheters with heparin-
bonded surfaces are available to prevent clotting, but do little to prevent infections. In additions, catheters coated
with antiseptics or antibiotics decrease the risk of bacterial infection, but do not prevent biofilm formation that
shields bacteria from antibiotics. Therefore, there is a necessity and opportunity to combine strategies for
preventing thrombosis and infection into single implantable device coatings for enhanced patency and safety.
Our work and others have demonstrated that nitric oxide (NO) release from polymer surfaces can prevent platelet
activation and bacterial infection. This technology mimics the vascular endothelial cells lining the blood vessels,
as well as other cells in our bodies, producing NO locally to prevent clotting and bacterial biofilm and subsequent
infections. Recently we discovered that all of the positive effects can be achieved from polymers doped with the
NO donor molecule S-nitroso-N-acetylpenicillamine (SNAP), which is nontoxic, inexpensive, and easy to
synthesize. Nitric oxide release alone can inhibit platelet function locally at the polymer/blood interface, but it
does not prevent fibrinogen adsorption and fibrin formation which plays a key role in a clot formation. Liquid-
infused surfaces exhibit resistance to biofouling and protein adsorption. Our recent work has shown that
combining slippery tethered liquid-perfluorocarbon (TLP) surfaces with polymers impregnated with NO-releasing
moieties reduces protein adsorption and platelet adhesion/activation significantly better than NO-releasing
polymers alone. The goal of this proposal is to develop, optimize, and evaluate a novel polymer that will
combine agents that inhibit platelet adhesion and activation via impregnated NO-releasing molecules as
well as inhibit biofouling using the liquid-infused TLP surfaces. The biomaterials laboratory directed by Dr.
Brisbois will develop the synthesis and polymer fabrication methods, optimize the NO release levels, evaluate
the durability properties, study the sterilization/storage stability, and evaluate the antimicrobial properties against
common microbes associated with catheter infections. Dr. Handa’s laboratory will study the blood-material
interactions and also conduct the chronic animal studies to evaluate the catheters for thrombosis and infection.
The new polymers will be applicable to any blood-contacting device; however, this proposal will focus on studying
the combined antifouling and NO-releasing effects in long-term (up to 30 d) intravascular catheters on clotting
and infection. Successful completion of this project will allow progression to early clinical trials and development
of a new generation of catheters that can reduce complications while improving the success of patient care.
项目摘要/摘要
目前,血管内导管的临床应用面临着主要挑战:1)血小板活化和
表面诱导的血栓形成,2)表面蛋白质和细菌的生物污损,以及3)感染。血栓
形成可进一步导致血管阻塞、导管故障,甚至危及生命的情况
比如栓塞症。在美国,导管的细菌污染每年导致超过2.8万人死亡
各州,以及医疗保健行业损失了惊人的23亿美元。使用肝素的商用导管-
粘合表面可以防止凝血,但对预防感染作用很小。此外,导管被涂上了
使用防腐剂或抗生素可降低细菌感染的风险,但不能防止生物被膜的形成
保护细菌免受抗生素的侵害。因此,有必要也有机会将战略结合起来,以
防止血栓形成和感染进入单一的植入性设备涂层,以增强通透性和安全性。
我们和其他人的工作已经证明,从聚合物表面释放的一氧化氮(NO)可以防止血小板
激活和细菌感染。这项技术模拟血管内皮细胞衬里血管,
以及我们体内的其他细胞,局部不产生任何物质来防止凝血和细菌生物膜以及随后的
感染。最近我们发现,所有的正效应都可以从聚合物中掺杂
NO供体分子S-亚硝基-N-乙酰青霉胺(SNAP),无毒、价廉、易得
合成。单独释放一氧化氮可以抑制聚合物/血液界面的局部血小板功能,但它
不能阻止纤维蛋白原的吸附和纤维蛋白的形成,而纤维蛋白在血栓形成中起着关键作用。液体-
注入的表面表现出对生物污垢和蛋白质吸附的抵抗性。我们最近的研究表明,
将光滑的系留液体全氟化碳(TLP)表面与浸渍有NO释放的聚合物相结合
部分减少蛋白质吸附和血小板黏附/活化的效果明显优于NO释放
只有聚合物。该提案的目标是开发、优化和评估一种新型聚合物,这种聚合物将
通过注入NO释放分子抑制血小板黏附和激活的联合药物,如
并使用注入液体的TLP表面来抑制生物污垢。他领导的生物材料实验室。
Brisbois将开发合成和聚合物制造方法,优化NO释放水平,评估
耐久性能,杀菌/储存稳定性研究,抗菌性能评价
与导管感染有关的常见微生物。汉达博士的实验室将研究血液物质
并进行慢性动物研究,以评估导管的血栓形成和感染。
新的聚合物将适用于任何血液接触设备;然而,这项提议将集中在研究
长期(长达30d)血管内导管的抗垢和NO释放对凝血的联合作用
和感染。该项目的成功完成将使其进入早期临床试验和开发阶段。
新一代导尿管可以减少并发症,同时提高患者护理的成功率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Joy Brisbois其他文献
Elizabeth Joy Brisbois的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Joy Brisbois', 18)}}的其他基金
Prevention of catheter related infections via photoactive nitric oxide delivery device
通过光敏一氧化氮输送装置预防导管相关感染
- 批准号:
10753081 - 财政年份:2023
- 资助金额:
$ 35.76万 - 项目类别:
Heparin-free extracorporeal circulation via combined nitric oxide releasing/generating surfaces
通过组合的一氧化氮释放/生成表面进行无肝素体外循环
- 批准号:
10608084 - 财政年份:2021
- 资助金额:
$ 35.76万 - 项目类别:
Heparin-free extracorporeal circulation via combined nitric oxide releasing/generating surfaces
通过组合的一氧化氮释放/生成表面进行无肝素体外循环
- 批准号:
10394301 - 财政年份:2021
- 资助金额:
$ 35.76万 - 项目类别:
Heparin-free extracorporeal circulation via combined nitric oxide releasing/generating surfaces
通过组合的一氧化氮释放/生成表面进行无肝素体外循环
- 批准号:
10184748 - 财政年份:2021
- 资助金额:
$ 35.76万 - 项目类别:
Bioinspired antifouling and thromboresistant polymers for blood-contacting interfaces
用于血液接触界面的仿生防污和抗血栓聚合物
- 批准号:
10292846 - 财政年份:2020
- 资助金额:
$ 35.76万 - 项目类别:
Bioinspired antifouling and thromboresistant polymers for blood-contacting interfaces
用于血液接触界面的仿生防污和抗血栓聚合物
- 批准号:
10591536 - 财政年份:2020
- 资助金额:
$ 35.76万 - 项目类别:
Thromboresistant/Bactericidal Intravascular Catheters Based on Electrochemical Nitric Oxide Generation
基于电化学一氧化氮生成的抗血栓/杀菌血管内导管
- 批准号:
9147476 - 财政年份:2015
- 资助金额:
$ 35.76万 - 项目类别:
Thromboresistant/Bactericidal Intravascular Catheters Based on Electrochemical Nitric Oxide Generation
基于电化学一氧化氮生成的抗血栓/杀菌血管内导管
- 批准号:
8981223 - 财政年份:2015
- 资助金额:
$ 35.76万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 35.76万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 35.76万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 35.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 35.76万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 35.76万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 35.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 35.76万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 35.76万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 35.76万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 35.76万 - 项目类别:
Grant-in-Aid for Scientific Research (S)