Bioinspired antifouling and thromboresistant polymers for blood-contacting interfaces

用于血液接触界面的仿生防污和抗血栓聚合物

基本信息

  • 批准号:
    10591536
  • 负责人:
  • 金额:
    $ 35.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-20 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Currently, clinical applications of intravascular catheters suffer from major challenges: 1) platelet activation and surface-induced thrombosis, 2) biofouling of surfaces with proteins and bacteria, and 3) infection. Thrombus formation can further lead to obstruction of blood vessels, catheter malfunction, or even life-threatening situations such as embolism. Bacterial contamination of catheters causes more than 28,000 deaths per year in the United States, as well as costing the healthcare industry a staggering $2.3 billion. Commercial catheters with heparin- bonded surfaces are available to prevent clotting, but do little to prevent infections. In additions, catheters coated with antiseptics or antibiotics decrease the risk of bacterial infection, but do not prevent biofilm formation that shields bacteria from antibiotics. Therefore, there is a necessity and opportunity to combine strategies for preventing thrombosis and infection into single implantable device coatings for enhanced patency and safety. Our work and others have demonstrated that nitric oxide (NO) release from polymer surfaces can prevent platelet activation and bacterial infection. This technology mimics the vascular endothelial cells lining the blood vessels, as well as other cells in our bodies, producing NO locally to prevent clotting and bacterial biofilm and subsequent infections. Recently we discovered that all of the positive effects can be achieved from polymers doped with the NO donor molecule S-nitroso-N-acetylpenicillamine (SNAP), which is nontoxic, inexpensive, and easy to synthesize. Nitric oxide release alone can inhibit platelet function locally at the polymer/blood interface, but it does not prevent fibrinogen adsorption and fibrin formation which plays a key role in a clot formation. Liquid- infused surfaces exhibit resistance to biofouling and protein adsorption. Our recent work has shown that combining slippery tethered liquid-perfluorocarbon (TLP) surfaces with polymers impregnated with NO-releasing moieties reduces protein adsorption and platelet adhesion/activation significantly better than NO-releasing polymers alone. The goal of this proposal is to develop, optimize, and evaluate a novel polymer that will combine agents that inhibit platelet adhesion and activation via impregnated NO-releasing molecules as well as inhibit biofouling using the liquid-infused TLP surfaces. The biomaterials laboratory directed by Dr. Brisbois will develop the synthesis and polymer fabrication methods, optimize the NO release levels, evaluate the durability properties, study the sterilization/storage stability, and evaluate the antimicrobial properties against common microbes associated with catheter infections. Dr. Handa’s laboratory will study the blood-material interactions and also conduct the chronic animal studies to evaluate the catheters for thrombosis and infection. The new polymers will be applicable to any blood-contacting device; however, this proposal will focus on studying the combined antifouling and NO-releasing effects in long-term (up to 30 d) intravascular catheters on clotting and infection. Successful completion of this project will allow progression to early clinical trials and development of a new generation of catheters that can reduce complications while improving the success of patient care.
项目总结/摘要 目前,血管内导管的临床应用遭受主要挑战:1)血小板活化和血小板聚集。 表面诱导的血栓形成,2)蛋白质和细菌对表面的生物污染,以及3)感染。血栓 形成可进一步导致血管阻塞、导管故障或甚至危及生命的情况 例如栓塞。在美国,导管的细菌污染每年导致超过28,000人死亡 美国,以及成本医疗保健行业惊人的23亿美元。市售肝素导管- 粘合表面可用于防止凝血,但对防止感染作用不大。此外,涂层导管 使用防腐剂或抗生素可降低细菌感染的风险,但不能防止生物膜的形成, 保护细菌免受抗生素的侵害。因此,有必要和机会进行联合收割机战略, 防止血栓形成和感染到单个可植入装置涂层中,以增强开放性和安全性。 我们的工作和其他人已经证明,从聚合物表面释放的一氧化氮(NO)可以防止血小板聚集。 激活和细菌感染。这项技术模拟了血管内皮细胞, 以及我们体内的其他细胞,局部产生NO以防止凝血和细菌生物膜以及随后的 感染.最近,我们发现,所有的积极效果都可以从掺杂有 NO供体分子S-亚硝基-N-乙酰青霉胺(SNAP),其无毒、廉价且易于 合成。一氧化氮的释放单独可以抑制血小板在聚合物/血液界面的局部功能,但它 不能阻止纤维蛋白原吸附和纤维蛋白形成,而纤维蛋白形成在凝块形成中起关键作用。液体- 灌注表面表现出对生物污染和蛋白质吸附的抗性。我们最近的工作表明, 将光滑的拴系液体全氟化碳(TLP)表面与浸渍有释放NO的聚合物相结合, 部分降低蛋白质吸附和血小板粘附/活化显著优于NO释放 聚合物单独。该提案的目标是开发、优化和评估一种新型聚合物, 通过浸渍NO释放分子抑制血小板粘附和活化的联合收割机试剂, 以及使用注入液体的TLP表面抑制生物污垢。生物材料实验室由Dr。 Escherbois将开发合成和聚合物制造方法,优化NO释放水平,评估 耐久性,研究灭菌/储存稳定性,并评价抗微生物性能, 与导管感染相关的常见微生物。汉达博士的实验室将研究血液材料 相互作用,并进行慢性动物研究,以评价导管的血栓形成和感染。 新聚合物将适用于任何血液接触器械;然而,该提案将重点研究 在长期(长达30天)血管内导管中对凝血的联合作用 和感染该项目的成功完成将使进展到早期临床试验和开发 新一代的导管,可以减少并发症,同时提高病人护理的成功。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long-Term Storage Stability and Nitric Oxide Release Behavior of (N-Acetyl-S-nitrosopenicillaminyl)-S-nitrosopenicillamine-Incorporated Silicone Rubber Coatings.
  • DOI:
    10.1021/acsami.2c06712
  • 发表时间:
    2022-07-13
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Kumar, Rajnish;Chug, Manjyot Kaur;Brisbois, Elizabeth J.
  • 通讯作者:
    Brisbois, Elizabeth J.
Nitric Oxide Release and Antibacterial Efficacy Analyses of S-Nitroso-N-Acetyl-Penicillamine Conjugated to Titanium Dioxide Nanoparticles.
  • DOI:
    10.1021/acsabm.2c00131
  • 发表时间:
    2022-05-16
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Massoumi, Hamed;Kumar, Rajnish;Chug, Manjyot Kaur;Qian, Yun;Brisbois, Elizabeth J
  • 通讯作者:
    Brisbois, Elizabeth J
Smartphone compatible nitric oxide releasing insert to prevent catheter-associated infections.
  • DOI:
    10.1016/j.jconrel.2022.06.043
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Chug, Manjyot Kaur;Brisbois, Elizabeth J.
  • 通讯作者:
    Brisbois, Elizabeth J.
Therapeutic Delivery of Nitric Oxide Utilizing Saccharide-Based Materials.
  • DOI:
    10.1021/acsami.1c10964
  • 发表时间:
    2021-11-10
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Qian, Yun;Kumar, Rajnish;Chug, Manjyot Kaur;Massoumi, Hamed;Brisbois, Elizabeth J.
  • 通讯作者:
    Brisbois, Elizabeth J.
Prevention of medical device infections via multi-action nitric oxide and chlorhexidine diacetate releasing medical grade silicone biointerfaces.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Joy Brisbois其他文献

Elizabeth Joy Brisbois的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Joy Brisbois', 18)}}的其他基金

Prevention of catheter related infections via photoactive nitric oxide delivery device
通过光敏一氧化氮输送装置预防导管相关感染
  • 批准号:
    10753081
  • 财政年份:
    2023
  • 资助金额:
    $ 35.48万
  • 项目类别:
Heparin-free extracorporeal circulation via combined nitric oxide releasing/generating surfaces
通过组合的一氧化氮释放/生成表面进行无肝素体外循环
  • 批准号:
    10608084
  • 财政年份:
    2021
  • 资助金额:
    $ 35.48万
  • 项目类别:
Heparin-free extracorporeal circulation via combined nitric oxide releasing/generating surfaces
通过组合的一氧化氮释放/生成表面进行无肝素体外循环
  • 批准号:
    10394301
  • 财政年份:
    2021
  • 资助金额:
    $ 35.48万
  • 项目类别:
Heparin-free extracorporeal circulation via combined nitric oxide releasing/generating surfaces
通过组合的一氧化氮释放/生成表面进行无肝素体外循环
  • 批准号:
    10184748
  • 财政年份:
    2021
  • 资助金额:
    $ 35.48万
  • 项目类别:
Bioinspired antifouling and thromboresistant polymers for blood-contacting interfaces
用于血液接触界面的仿生防污和抗血栓聚合物
  • 批准号:
    10292846
  • 财政年份:
    2020
  • 资助金额:
    $ 35.48万
  • 项目类别:
Bioinspired antifouling and thromboresistant polymers for blood-contacting interfaces
用于血液接触界面的仿生防污和抗血栓聚合物
  • 批准号:
    10377491
  • 财政年份:
    2020
  • 资助金额:
    $ 35.48万
  • 项目类别:
Thromboresistant/Bactericidal Intravascular Catheters Based on Electrochemical Nitric Oxide Generation
基于电化学一氧化氮生成的抗血栓/杀菌血管内导管
  • 批准号:
    9147476
  • 财政年份:
    2015
  • 资助金额:
    $ 35.48万
  • 项目类别:
Thromboresistant/Bactericidal Intravascular Catheters Based on Electrochemical Nitric Oxide Generation
基于电化学一氧化氮生成的抗血栓/杀菌血管内导管
  • 批准号:
    8981223
  • 财政年份:
    2015
  • 资助金额:
    $ 35.48万
  • 项目类别:

相似海外基金

Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
  • 批准号:
    2901619
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
  • 批准号:
    EP/W027593/2
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
  • 批准号:
    2871817
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Studentship
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
  • 批准号:
    2312325
  • 财政年份:
    2023
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Standard Grant
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
  • 批准号:
    23H02303
  • 财政年份:
    2023
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
  • 批准号:
    23KJ0192
  • 财政年份:
    2023
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
  • 批准号:
    23H01158
  • 财政年份:
    2023
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
  • 批准号:
    2303933
  • 财政年份:
    2023
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了