Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
基本信息
- 批准号:10380832
- 负责人:
- 金额:$ 67.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdvanced DevelopmentAutoimmunityBehaviorBiochemicalBiologicalBiological ProcessBiomedical EngineeringBiomedical ResearchCell Differentiation processCell TherapyCellsCellular immunotherapyChemicalsCommunitiesComplexCuesCustomDevelopmentDiseaseDoseDrug DesignEngineeringFDA approvedFosteringGene ActivationGene ExpressionGenerationsGenesGenetic TranscriptionGoalsHumanHuman BiologyHuman EngineeringImmuneImmunologistLeadLigandsMalignant NeoplasmsMammalian CellMethodsModelingOncoproteinsOrganoidsOutputPharmaceutical PreparationsPhysiologyPlayProcessPropertyPublishingRegenerative MedicineRegulationReporterResearch PersonnelRoleSchemeScienceScientistSignal TransductionSpecificityStimulusSystemTechnologyTherapeuticTissue EngineeringTissuesTranscriptional RegulationViral VectorWorkYeastsbasecell behaviorcellular engineeringcombinatorialcytokinedesignflexibilitygene productimprovedinformation processinginterestnotch proteinnovelnovel diagnosticsnovel therapeuticsprogramsresponsesignal processingspatiotemporalsynthetic biologytherapy developmenttooltranscription factortumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Cells activate precise gene expression programs in response to multifactorial chemical and biological stimuli.
The purposeful manipulation of this process is a principal goal of synthetic biology, and its application to
human cells could lead to breakthroughs in our understanding of human biology and in the development of
next-generation diagnostics and therapeutics that respond in sophisticated ways to disease. Unfortunately,
tools to artificially control gene expression in mammalian cells have significant limitations, constraining our
ability to study fundamental biological processes and design more effective cell-based therapies. The most
widely-used tools are older generation technology, derived from bacterial transcriptional systems. These are
greatly limited in number, which restricts the number of gene products that can be simultaneously controlled.
Additionally and importantly, they use “simple” one-to-one regulatory interactions, imposing fundamental
restrictions on the regulatory flexibility and sophistication of designer systems. As a consequence, researchers
are unable to create sophisticated gene expression controllers that can flexibly sense and integrate
biochemical signals (e.g. ligands, chemical inducers, disease cues), and tune or reshape corresponding gene
activation profiles. Among the many biomedical applications that would be transformed by these precision
gene expression controllers in mammalian cells is the development of cell-based therapeutics for cancer, auto-
immunity, and regenerative medicine, which can suffer from issues related to over-activation and tissue
specificity. We propose to overcome these barriers by developing a novel synthetic toolkit for gene expression
control in mammalian cells. Inspired by the natural design of metazoan transcriptional systems, our framework
is based on synthetic transcription factors (synTFs) that can be programmed to assemble cooperatively in
multivalent complexes. Our previous work showed that cooperative synTFs enable construction of gene
expression control circuits with greatly expanded signal processing behavior in yeast. Here we will develop and
characterize mammalian self-assembling synTFs that have superior properties for installation into human cells
relative to existing tools. We will use these tools to develop three classes of gene expression controllers, which
we will demonstrate in human immune cells, chosen for their important role in human physiology and their
potential for cellular therapy: (1) Inducible controllers regulated by orthogonal, FDA-approved drugs. (2) Cell-
autonomous controllers that sense and process biological stimuli, including ligand recognition by synthetic
Notch receptors and microenvironmental cues. (3) Signal integration controllers that can perceive and integrate
multiple biological signals to activate transcriptional programs. We anticipate that this toolkit will be broadly
used by researchers to enable precision gene expression control across mammalian systems, including in
biomedical applications of synthetic biology, cell reprogramming, and cell-based therapeutics. We will make
our tools and design framework freely available to the academic scientific community.
项目摘要/摘要
细胞激活精确的基因表达程序,以响应多因素的化学和生物刺激。
有目的地操纵这一过程是合成生物学的主要目标,并将其应用于
人类细胞可能会导致我们对人类生物学的理解和发展的突破
以复杂的方式对疾病做出反应的下一代诊断和治疗。不幸的是,
人工控制哺乳动物细胞中基因表达的工具有很大的局限性,限制了我们的
研究基本生物学过程和设计更有效的基于细胞的疗法的能力。最多的
广泛使用的工具是源自细菌转录系统的老一代技术。这些是
在数量上非常有限,这限制了可以同时控制的基因产物的数量。
此外,也是重要的一点是,它们使用“简单的”一对一监管交互,将基础
对设计者系统的监管灵活性和复杂性的限制。因此,研究人员
无法创建复杂的基因表达控制器,可以灵活地感知和整合
生化信号(如配体、化学诱导剂、疾病信号),并调整或重塑相应的基因
激活配置文件。在许多生物医学应用中,这些精确度将改变
哺乳动物细胞中的基因表达调控是以细胞为基础的癌症治疗方法的发展,自
免疫和再生医学,这可能会受到与过度激活和组织有关的问题的影响
专一性。我们建议通过开发一种新的合成基因表达工具包来克服这些障碍
哺乳动物细胞中的控制力。受后生动物转录系统自然设计的启发,我们的框架
是基于合成转录因子(SynTF)的,可以对其编程以在
多价络合物。我们以前的工作表明,协作性合成因子能够构建基因
酵母中具有极大扩展的信号处理行为的表达控制电路。在这里,我们将开发和
表征哺乳动物自组装合成因子,这些合成因子具有安装到人类细胞中的优越性能
相对于现有工具。我们将使用这些工具开发三类基因表达控制器,它们
我们将在人类免疫细胞中演示,选择免疫细胞是因为它们在人类生理中的重要作用,以及它们的
细胞治疗的潜力:(1)由FDA批准的正交药物控制的诱导型控制器。(2)单元格-
感知和处理生物刺激的自主控制器,包括通过人工合成识别配体
缺口受体和微环境线索。(3)可感知、可集成的信号集成控制器
激活转录程序的多种生物信号。我们预计该工具包将广泛应用于
被研究人员用来实现跨哺乳动物系统的精确基因表达控制,包括在
合成生物学、细胞重编程和基于细胞的治疗的生物医学应用。我们会让
我们的工具和设计框架免费提供给学术界和科学界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmad Samir Khalil其他文献
Ahmad Samir Khalil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmad Samir Khalil', 18)}}的其他基金
2023 Synthetic Biology Gordon Research Conference and Gordon Research Seminar
2023年合成生物学戈登研究大会暨戈登研究研讨会
- 批准号:
10753604 - 财政年份:2023
- 资助金额:
$ 67.5万 - 项目类别:
Programmable benchtop bioreactors for scalable eco-evolutionary dynamics of the human microbiome
用于人类微生物组可扩展生态进化动力学的可编程台式生物反应器
- 批准号:
10642891 - 财政年份:2022
- 资助金额:
$ 67.5万 - 项目类别:
Programmable benchtop bioreactors for scalable eco-evolutionary dynamics of the human microbiome
用于人类微生物组可扩展生态进化动力学的可编程台式生物反应器
- 批准号:
10503736 - 财政年份:2022
- 资助金额:
$ 67.5万 - 项目类别:
Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
- 批准号:
10584605 - 财政年份:2020
- 资助金额:
$ 67.5万 - 项目类别:
Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
- 批准号:
10153781 - 财政年份:2020
- 资助金额:
$ 67.5万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
9925776 - 财政年份:2019
- 资助金额:
$ 67.5万 - 项目类别:
ePACE: automation platforms for adaptable and scalable continuous evolution of biomolecules with therapeutic potential
ePACE:自动化平台,用于具有治疗潜力的生物分子的适应性和可扩展的持续进化
- 批准号:
10734591 - 财政年份:2019
- 资助金额:
$ 67.5万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
10113365 - 财政年份:2019
- 资助金额:
$ 67.5万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
10391333 - 财政年份:2019
- 资助金额:
$ 67.5万 - 项目类别:
Combatting antibiotic resistance with synthetic biology technologies
利用合成生物学技术对抗抗生素耐药性
- 批准号:
9167953 - 财政年份:2016
- 资助金额:
$ 67.5万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 67.5万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 67.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 67.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 67.5万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 67.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 67.5万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 67.5万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 67.5万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 67.5万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant